
Alonso Vicente Pizarro Valdebenito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5861739/publications.pdf

Version: 2024-02-01

Alonso Vicente Pizarro

#	Article	IF	CITATIONS
1	Invited perspectives: Challenges and future directions in improving bridge flood resilience. Natural Hazards and Earth System Sciences, 2022, 22, 795-812.	3.6	19
2	Relative importance of parameters controlling scour at bridge piers using the new toolbox ScourAPP. Computers and Geosciences, 2022, 163, 105117.	4.2	3
3	Influence of Dam Breach Parameter Statistical Definition on Resulting Rupture Maximum Discharge. Water (Switzerland), 2022, 14, 1776.	2.7	7
4	Discussion of "Estimation of Exceedance Probability of Scour on Bridges Using Reliability Principles― by Manuel Contreras-Jara, Tomás Echaveguren, Alondra Chamorro, and Jose Vargas-Baecheler. Journal of Hydrologic Engineering - ASCE, 2022, 27, .	1.9	0
5	Stochastic Analysis of the Marginal and Dependence Structure of Streamflows: From Fine-Scale Records to Multi-Centennial Paleoclimatic Reconstructions. Hydrology, 2022, 9, 126.	3.0	1
6	Increasing LSPIV performances by exploiting the seeding distribution index at different spatial scales. Journal of Hydrology, 2021, 598, 126438.	5.4	15
7	Recent Advancements and Perspectives in UAS-Based Image Velocimetry. Drones, 2021, 5, 81.	4.9	12
8	A comparison of tools and techniques for stabilising unmanned aerial system (UAS) imagery for surface flow observations. Hydrology and Earth System Sciences, 2021, 25, 5105-5132.	4.9	14
9	Unmanned Aerial Vehicles in Hydrology and Water Management: Applications, Challenges, and Perspectives. Water Resources Research, 2021, 57, e2021WR029925.	4.2	44
10	Local Scour and Sediment Deposition at Bridge Piers during Floods. Journal of Hydraulic Engineering, 2020, 146, .	1.5	32
11	Refining imageâ€velocimetry performances for streamflow monitoring: Seeding metrics to errors minimization. Hydrological Processes, 2020, 34, 5167-5175.	2.6	21
12	An Evaluation of Image Velocimetry Techniques under Low Flow Conditions and High Seeding Densities Using Unmanned Aerial Systems. Remote Sensing, 2020, 12, 232.	4.0	69
13	Metrics for the Quantification of Seeding Characteristics to Enhance Image Velocimetry Performance in Rivers. Remote Sensing, 2020, 12, 1789.	4.0	31
14	ls waist-to-height ratio a better predictor of hypertension and type 2 diabetes than body mass index and waist circumference in the Chilean population?. Nutrition, 2020, 79-80, 110932.	2.4	16
15	Optimal cut-off points for waist circumference in the definition of metabolic syndrome in Chile. Public Health Nutrition, 2020, 23, 2898-2903.	2.2	2
16	Potential advantages of flow-area rating curves compared to classic stage-discharge-relations. Journal of Hydrology, 2020, 585, 124752.	5.4	16
17	The Science behind Scour at Bridge Foundations: A Review. Water (Switzerland), 2020, 12, 374.	2.7	77
18	Towards harmonisation of image velocimetry techniques for river surface velocity observations. Earth System Science Data, 2020, 12, 1545-1559.	9.9	44

Alonso Vicente Pizarro

1

#	Article	IF	CITATIONS
19	Identifying the optimal spatial distribution of tracers for optical sensing of stream surface flow. Hydrology and Earth System Sciences, 2020, 24, 5173-5185.	4.9	28
20	Quantification of Modelling Uncertainties in Bridge Scour Risk Assessment under Multiple Flood Events. Geosciences (Switzerland), 2019, 9, 445.	2.2	26
21	Soil Moisture Monitoring in Iran by Implementing Satellite Data into the Root-Zone SMAR Model. Hydrology, 2019, 6, 44.	3.0	8
22	New Insights Offered by UAS for River Monitoring. , 2019, , 211-234.		6
23	A Theoretically Derived Probability Distribution of Scour. Water (Switzerland), 2018, 10, 1520.	2.7	12
24	Exploring the optimal experimental setup for surface flow velocity measurements using PTV. Environmental Monitoring and Assessment, 2018, 190, 460.	2.7	36
25	Dimensionless Effective Flow Work for Estimation of Pier Scour Caused by Flood Waves. Journal of Hydraulic Engineering, 2017, 143, .	1.5	32
26	A model of bridge pier scour during flood waves. Journal of Hydraulic Research/De Recherches Hydrauliques, 2017, 55, 310-323.	1.7	46
27	BRISENT: An Entropy-Based Model for Bridge-Pier Scour Estimation under Complex Hydraulic Scenarios. Water (Switzerland), 2017, 9, 889.	2.7	21
			_

A model for scour around bridge piers caused by flood waves. , 2016, , .