
Mark G Waugh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5861096/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phosphatidylinositol 4-kinase is required for endosomal trafficking and degradation of the EGF receptor. Journal of Cell Science, 2006, 119, 571-581.	2.0	139
2	Epidermal growth factor receptor activation is localized within low-buoyant density, non-caveolar membrane domains. Biochemical Journal, 1999, 337, 591-597.	3.7	131
3	Phosphatidylinositol 4-Phosphate Synthesis in Immunoisolated Caveolae-like Vesicles and Low Buoyant Density Non-caveolar Membranes. Journal of Biological Chemistry, 1998, 273, 17115-17121.	3.4	100
4	Cloning of a Human Type II Phosphatidylinositol 4-Kinase Reveals a Novel Lipid Kinase Family. Journal of Biological Chemistry, 2001, 276, 16635-16640.	3.4	90
5	Loss of phosphatidylinositol 4-kinase 2α activity causes late onset degeneration of spinal cord axons. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11535-11539.	7.1	77
6	Mammalian phosphatidylinositol 4-kinases as modulators of membrane trafficking and lipid signaling networks. Progress in Lipid Research, 2013, 52, 294-304.	11.6	76
7	Localization of a highly active pool of type II phosphatidylinositol 4-kinase in a p97/valosin-containing-protein-rich fraction of the endoplasmic reticulum. Biochemical Journal, 2003, 373, 57-63.	3.7	61
8	Relationship between phosphatidylinositol 4-phosphate synthesis, membrane organization, and lateral diffusion of PI4KIIα at the trans-Golgi network. Journal of Lipid Research, 2010, 51, 2314-2324.	4.2	53
9	The Great Escape: how phosphatidylinositol 4-kinases and PI4P promote vesicle exit from the Golgi (and drive cancer). Biochemical Journal, 2019, 476, 2321-2346.	3.7	53
10	Lipid and Peptide Control of Phosphatidylinositol 4-Kinase IIα Activity on Golgi-endosomal Rafts. Journal of Biological Chemistry, 2006, 281, 3757-3763.	3.4	51
11	Impacts of the Covidâ€19 pandemic on the health of university students. International Journal of Health Planning and Management, 2021, 36, 618-627.	1.7	47
12	PIPs in neurological diseases. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 1066-1082.	2.4	46
13	The Phosphatidylinositol 4-Kinases: Don't Call it a Comeback. Sub-Cellular Biochemistry, 2012, 58, 1-24.	2.4	46
14	Epidermal growth factor receptor activation is localized within low-buoyant density, non-caveolar membrane domains. Biochemical Journal, 1999, 337, 591.	3.7	45
15	Chromosomal Instability and Phosphoinositide Pathway Gene Signatures in Glioblastoma Multiforme. Molecular Neurobiology, 2016, 53, 621-630.	4.0	44
16	Phosphatidylinositol 4-kinases, phosphatidylinositol 4-phosphate and cancer. Cancer Letters, 2012, 325, 125-131.	7.2	42
17	Immunohistochemical staining reveals differential expression of ACSL3 and ACSL4 in hepatocellular carcinoma and hepatic gastrointestinal metastases. Bioscience Reports, 2020, 40, .	2.4	37
18	Detergent-free isolation and characterization of cholesterol-rich membrane domains from trans-Golgi network vesicles. Journal of Lipid Research, 2011, 52, 582-589.	4.2	33

Mark G Waugh

#	Article	IF	CITATIONS
19	Phosphatidylinositol 4-Kinases and PI4P Metabolism in the Nervous System: Roles in Psychiatric and Neurological Diseases. Molecular Neurobiology, 2013, 47, 361-372.	4.0	33
20	Identification and characterization of differentially active pools of type IIÎ \pm phosphatidylinositol 4-kinase activity in unstimulated A431 cells. Biochemical Journal, 2003, 376, 497-503.	3.7	32
21	EGF receptors as transcription factors: ridiculous or sublime?. Nature Cell Biology, 2001, 3, E209-E211.	10.3	31
22	The endogenous subcellular localisations of the long chain fatty acid-activating enzymes ACSL3 and ACSL4 in sarcoma and breast cancer cells. Molecular and Cellular Biochemistry, 2018, 448, 275-286.	3.1	31
23	Amplification of Chromosome 1q Genes Encoding the Phosphoinositide Signalling Enzymes <i>PI4KB, AKT3, PIP5K1A </i> and <i>PI3KC2B</i> in Breast Cancer. Journal of Cancer, 2014, 5, 790-796.	2.5	25
24	Preparation of Membrane Rafts. Methods in Molecular Biology, 2009, 462, 1-12.	0.9	19
25	Raft-like membranes from the trans-Golgi network and endosomal compartments. Nature Protocols, 2013, 8, 2429-2439.	12.0	17
26	Agonist-induced desensitization and phosphorylation of m1-muscarinic receptors. Biochemical Journal, 1999, 338, 175.	3.7	14
27	Phosphatidylinositol 4-kinase IlÎ ² negatively regulates invadopodia formation and suppresses an invasive cellular phenotype. Molecular Biology of the Cell, 2016, 27, 4033-4042.	2.1	14
28	Identification of Mac-2-binding Protein as a Putative Marker of Neuroendocrine Tumors from the Analysis of Cell Line Secretomes. Molecular and Cellular Proteomics, 2010, 9, 656-666.	3.8	13
29	CDP-diacylglycerol phospholipid synthesis in detergent-soluble, non-raft, membrane microdomains of the endoplasmic reticulum. Journal of Lipid Research, 2011, 52, 2148-2158.	4.2	13
30	Lipid rafts, microdomain heterogeneity and interâ€organelle contacts: Impacts on membrane preparation for proteomic studies. Biology of the Cell, 2012, 104, 618-627.	2.0	11
31	Phosphatidylinositol 4-kinase type II alpha. The AFCS-nature Molecule Pages, 0, , .	0.2	11
32	Novel defect in phosphatidylinositol 4â€kinase type 2â€alpha (<scp> <i>PI4K2A</i> </scp>) at the membraneâ€enzyme interface is associated with metabolic cutis laxa. Journal of Inherited Metabolic Disease, 2020, 43, 1382-1391.	3.6	7
33	Modeling the effects of cyclodextrin on intracellular membrane vesicles from Cos-7 cells prepared by sonication and carbonate treatment. PeerJ, 2015, 3, e1351.	2.0	5
34	Quantification of Multiple Phosphatidylinositol 4-Kinase Isozyme Activities in Cell Extracts. Methods in Molecular Biology, 2009, 462, 1-11.	0.9	4
35	Measuring Phosphatidylinositol Generation on Biological Membranes. Methods in Molecular Biology, 2016, 1376, 239-246.	0.9	3
36	Assay for CDP-Diacylglycerol Generation by CDS in Membrane Fractions. Methods in Molecular Biology, 2016, 1376, 247-254.	0.9	0

#	Article	IF	CITATIONS
37	Phosphatidylinositol 4-Kinase Type II Alpha. , 2016, , 1-6.		Ο
38	Phosphatidylinositol 4-Kinase Type II Alpha. , 2018, , 3934-3939.		0