List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5861088/publications.pdf Version: 2024-02-01

DAM ANTER

#	Article	IF	CITATIONS
1	Meeting Report: Aging Research and Drug Discovery. Aging, 2022, 14, 530-543.	3.1	4
2	A systematic analysis of diet-induced nephroprotection reveals overlapping changes in cysteine catabolism. Translational Research, 2022, 244, 32-46.	5.0	4
3	Ageing induces tissueâ€specific transcriptomic changes in <i>Caenorhabditis elegans</i> . EMBO Journal, 2022, 41, e109633.	7.8	22
4	Mitochondrial hydrogen sulfide supplementation improves health in the <i>C. elegans</i> Duchenne muscular dystrophy model. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	27
5	<i>N</i> 1-acetylspermidine is a determinant of hair follicle stem cell fate. Journal of Cell Science, 2021, 134, .	2.0	11
6	Regulation of the one carbon folate cycle as a shared metabolic signature of longevity. Nature Communications, 2021, 12, 3486.	12.8	37
7	miR-1 coordinately regulates lysosomal v-ATPase and biogenesis to impact proteotoxicity and muscle function during aging. ELife, 2021, 10, .	6.0	9
8	Sperm cryopreservation and in vitro fertilization techniques for the African turquoise killifish Nothobranchius furzeri. Scientific Reports, 2021, 11, 17145.	3.3	6
9	Mass spectrometric characterization of cyclic dinucleotides (CDNs) in vivo. Analytical and Bioanalytical Chemistry, 2021, 413, 6457-6468.	3.7	5
10	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock	10 Tf 50 38 9.1	82 Td (editior 1,430
11	Cell size is a determinant of stem cell potential during aging. Science Advances, 2021, 7, eabk0271.	10.3	75
12	Polyunsaturated fatty acids and p38-MAPK link metabolic reprogramming to cytoprotective gene expression during dietary restriction. Nature Communications, 2020, 11, 4865.	12.8	21
13	Hexosamine Pathway Activation Improves Protein Homeostasis through the Integrated Stress Response. IScience, 2020, 23, 100887.	4.1	23
14	Identification of a Novel Link between the Intermediate Filament Organizer IFO-1 and Cholesterol Metabolism in the Caenorhabditis elegans Intestine. International Journal of Molecular Sciences, 2020, 21, 8219.	4.1	5
15	NFYB-1 regulates mitochondrial function and longevity via lysosomal prosaposin. Nature Metabolism, 2020, 2, 387-396.	11.9	35
16	The inherent challenges of classifying senescence—Response. Science, 2020, 368, 595-596.	12.6	5

17	Optimization of mass spectrometry settings for steroidomic analysis in young and old killifish. Analytical and Bioanalytical Chemistry, 2020, 412, 4089-4099.	3.7	8
----	--	-----	---

HLH-30/TFEB Is a Master Regulator of Reproductive Quiescence. Developmental Cell, 2020, 53, 316-329.e5. 18 7.0 32

#	Article	IF	CITATIONS
19	Evolutionarily conserved regulation of immunity by the splicing factor RNP-6/PUF60. ELife, 2020, 9, .	6.0	11
20	Leptin signaling impairs macrophage defenses against Salmonella Typhimurium. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16551-16560.	7.1	17
21	A secreted microRNA disrupts autophagy in distinct tissues of Caenorhabditis elegans upon ageing. Nature Communications, 2019, 10, 4827.	12.8	40
22	Pluronic gel-based burrowing assay for rapid assessment of neuromuscular health in C. elegans. Scientific Reports, 2019, 9, 15246.	3.3	21
23	Dietary sulfur amino acid restriction upregulates DICER to confer beneficial effects. Molecular Metabolism, 2019, 29, 124-135.	6.5	15
24	To help aging populations, classify organismal senescence. Science, 2019, 366, 576-578.	12.6	42
25	Comparison of ESIâ€MS/MS and APCIâ€MS methods for the quantification of folic acid analogs in <scp> <i>C. elegans </i> </scp> . Journal of Mass Spectrometry, 2019, 54, 316-327.	1.6	6
26	Developmental Timing: Honey, I Reprogrammed the Kids. Current Biology, 2019, 29, R420-R422.	3.9	1
27	RNA interference may result in unexpected phenotypes in Caenorhabditis elegans. Nucleic Acids Research, 2019, 47, 3957-3969.	14.5	19
28	Suppression of autophagic activity by Rubicon is a signature of aging. Nature Communications, 2019, 10, 847.	12.8	132
29	Latest advances in aging research and drug discovery. Aging, 2019, 11, 9971-9981.	3.1	13
30	Cell cycle dynamics during diapause entry and exit in an annual killifish revealed by FUCCI technology. EvoDevo, 2019, 10, 29.	3.2	52
31	A novel EI-GC/MS method for the accurate quantification of anti-aging compound oleoylethanolamine in <i>C. elegans</i> . Analytical Methods, 2018, 10, 2551-2559.	2.7	10
32	Nucleolar fibrillarin is an evolutionarily conserved regulator of bacterial pathogen resistance. Nature Communications, 2018, 9, 3607.	12.8	43
33	Nucleolar Function in Lifespan Regulation. Trends in Cell Biology, 2018, 28, 662-672.	7.9	133
34	LINâ€⊋8 balances longevity and germline stem cell number in <i>Caenorhabditis elegans</i> through letâ€₹ <i>/</i> AKT <i>/</i> DAFâ€16 axis. Aging Cell, 2017, 16, 113-124.	6.7	18
35	Small nucleoli are a cellular hallmark of longevity. Nature Communications, 2017, 8, 16083.	12.8	190
36	Larval crowding accelerates C. elegans development and reduces lifespan. PLoS Genetics, 2017, 13, e1006717.	3.5	60

ADAM ANTEBI

#	Article	IF	CITATIONS
37	Mondo complexes regulate TFEB via TOR inhibition to promote longevity in response to gonadal signals. Nature Communications, 2016, 7, 10944.	12.8	71
38	Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an αâ€glucosidase inhibitor or a Nrf2â€inducer. Aging Cell, 2016, 15, 872-884.	6.7	277
39	Mutation of C. elegans demethylase spr-5 extends transgenerational longevity. Cell Research, 2016, 26, 229-238.	12.0	49
40	Oral Supplementation of Glucosamine Fails to Alleviate Acute Kidney Injury in Renal Ischemia-Reperfusion Damage. PLoS ONE, 2016, 11, e0161315.	2.5	9
41	Interventions to Slow Aging in Humans: Are We Ready?. Aging Cell, 2015, 14, 497-510.	6.7	481
42	Co-chaperone p23 Regulates C. elegans Lifespan in Response to Temperature. PLoS Genetics, 2015, 11, e1005023.	3.5	37
43	Hexosamine pathway and (ER) protein quality control. Current Opinion in Cell Biology, 2015, 33, 14-18.	5.4	52
44	Nuclear receptor signal transduction in C. elegans. WormBook, 2015, , 1-49.	5.3	69
45	An Insulin-to-Insulin Regulatory Network Orchestrates Phenotypic Specificity in Development and Physiology. PLoS Genetics, 2014, 10, e1004225.	3.5	90
46	Editorial. Aging Cell, 2014, 13, 1-1.	6.7	1
47	Comparative Metabolomics Reveals Endogenous Ligands of DAF-12, a Nuclear Hormone Receptor, Regulating C.Âelegans Development and Lifespan. Cell Metabolism, 2014, 19, 73-83.	16.2	94
48	Hexosamine Pathway Metabolites Enhance Protein Quality Control and Prolong Life. Cell, 2014, 156, 1167-1178.	28.9	185
49	A Photocleavable Masked Nuclearâ€Receptor Ligand Enables Temporal Control of <i>C.â€elegans</i> Development. Angewandte Chemie - International Edition, 2014, 53, 2110-2113.	13.8	7
50	DRE-1/FBXO11-Dependent Degradation of BLMP-1/BLIMP-1 Governs C.Âelegans Developmental Timing and Maturation. Developmental Cell, 2014, 28, 697-710.	7.0	72
51	The NHR-8 Nuclear Receptor Regulates Cholesterol and Bile Acid Homeostasis in C.Âelegans. Cell Metabolism, 2013, 18, 212-224.	16.2	86
52	Steroid Regulation of C. elegans Diapause, Developmental Timing, and Longevity. Current Topics in Developmental Biology, 2013, 105, 181-212.	2.2	46
53	Regulation of longevity by the reproductive system. Experimental Gerontology, 2013, 48, 596-602.	2.8	95
54	Editorial. Aging Cell, 2013, 12, 1-1.	6.7	1

#	Article	IF	CITATIONS
55	Regulation of the CRL4Cdt2 Ubiquitin Ligase and Cell-Cycle Exit by the SCFFbxo11 Ubiquitin Ligase. Molecular Cell, 2013, 49, 1159-1166.	9.7	67
56	Dietary Restriction Induced Longevity Is Mediated by Nuclear Receptor NHR-62 in Caenorhabditis elegans. PLoS Genetics, 2013, 9, e1003651.	3.5	73
57	Aging Cell Prize for Best Paper 2012. Aging Cell, 2013, 12, 1148-1148.	6.7	0
58	A Novel 3-Hydroxysteroid Dehydrogenase That Regulates Reproductive Development and Longevity. PLoS Biology, 2012, 10, e1001305.	5.6	61
59	Hormonal Signal Amplification Mediates Environmental Conditions during Development and Controls an Irreversible Commitment to Adulthood. PLoS Biology, 2012, 10, e1001306.	5.6	75
60	A Steroid Receptor–MicroRNA Switch Regulates Life Span in Response to Signals from the Gonad. Science, 2012, 338, 1472-1476.	12.6	97
61	Regulation of Neuronal APL-1 Expression by Cholesterol Starvation. PLoS ONE, 2012, 7, e32038.	2.5	9
62	Sterol Regulation of Metabolism, Homeostasis, and Development. Annual Review of Biochemistry, 2011, 80, 885-916.	11.1	122
63	The Rieske oxygenase DAFâ€36 functions as a cholesterol 7â€desaturase in steroidogenic pathways governing longevity. Aging Cell, 2011, 10, 879-884.	6.7	59
64	Aging Cell Prize for Best Paper 2010. Aging Cell, 2011, 10, 1092-1092.	6.7	0
65	Aging Cell Prize for Best Paper 2009. Aging Cell, 2010, 9, 650-650.	6.7	0
66	Intracellular Trafficking and Synaptic Function of APL-1 in Caenorhabditis elegans. PLoS ONE, 2010, 5, e12790.	2.5	42
67	Nuclear Hormone Receptor Regulation of MicroRNAs Controls Developmental Progression. Science, 2009, 324, 95-98.	12.6	144
68	Mitochondrial DNA level, but not active replicase, is essential for Caenorhabditis elegans development. Nucleic Acids Research, 2009, 37, 1817-1828.	14.5	100
69	A Conserved Endocrine Mechanism Controls the Formation of Dauer and Infective Larvae in Nematodes. Current Biology, 2009, 19, 67-71.	3.9	149
70	Announcements from your Editorial Team. Aging Cell, 2009, 8, 1-1.	6.7	4
71	Aging Cell Prize for Best Paper. Aging Cell, 2009, 8, 345-345.	6.7	0
72	Aging Cell manuscripts on the road to PubMed Central: shifting from manual to automatic transmission. Aging Cell, 2008, 7, 447-447.	6.7	0

#	Article	IF	CITATIONS
73	Caenorhabditis elegans nuclear receptors: insights into life traits. Trends in Endocrinology and Metabolism, 2008, 19, 153-160.	7.1	43
74	<i>C. elegans</i> dauer formation and the molecular basis of plasticity. Genes and Development, 2008, 22, 2149-2165.	5.9	476
75	Syntheses and Biological Evaluation of B-Ring-Modified Analogues of Dafachronic Acid A. Organic Letters, 2008, 10, 3643-3645.	4.6	10
76	A bile acid-like steroid modulates <i>Caenorhabditis elegans</i> lifespan through nuclear receptor signaling. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5014-5019.	7.1	206
77	Genetics of Aging in Caenorhabditis elegans. PLoS Genetics, 2007, 3, e129.	3.5	167
78	DRE-1: An Evolutionarily Conserved F Box Protein that Regulates C. elegans Developmental Age. Developmental Cell, 2007, 12, 443-455.	7.0	61
79	When less is more. Nature, 2007, 447, 536-537.	27.8	17
80	A new series: ?Hot Topics? in aging research. Aging Cell, 2007, 6, 133-133.	6.7	0
81	Identification of Ligands for DAF-12 that Govern Dauer Formation and Reproduction in C. elegans. Cell, 2006, 124, 1209-1223.	28.9	414
82	Hormonal Control of C. elegans Dauer Formation and Life Span by a Rieske-like Oxygenase. Developmental Cell, 2006, 10, 473-482.	7.0	177
83	Welcome to the new Editorial Board. Aging Cell, 2006, 5, 201-201.	6.7	0
84	Control of Caenorhabditis elegans life history by nuclear receptor signal transduction. Experimental Gerontology, 2006, 41, 904-909.	2.8	29
85	Nuclear hormone receptors in C. elegans. WormBook, 2006, , 1-13.	5.3	57
86	PHYSIOLOGY: The Tick-Tock of Aging?. Science, 2005, 310, 1911-1913.	12.6	11
87	The prepared mind of the worm. Cell Metabolism, 2005, 1, 157-158.	16.2	2
88	Identification of C. elegans DAF-12-binding sites, response elements, and target genes. Genes and Development, 2004, 18, 2529-2544.	5.9	68
89	Hormonal signals produced by DAF-9/cytochrome P450 regulate C. elegans dauer diapause in response to environmental cues. Development (Cambridge), 2004, 131, 1765-1776.	2.5	161
90	A novel nuclear receptor/coregulator complex controls C. elegans lipid metabolism, larval development, and aging. Genes and Development, 2004, 18, 2120-2133.	5.9	114

#	Article	IF	CITATIONS
91	Tipping the Balance toward Longevity. Developmental Cell, 2004, 6, 315-316.	7.0	10
92	Long Life. Neuron, 2004, 41, 1-3.	8.1	45
93	Inside Insulin Signaling, Communication Is Key to Long Life. Science of Aging Knowledge Environment: SAGE KE, 2004, 2004, pe25-pe25.	0.8	5
94	The Endocrine Regulation of Aging by Insulin-like Signals. Science, 2003, 299, 1346-1351.	12.6	1,204
95	A Hormonal Signaling Pathway Influencing C. elegans Metabolism, Reproductive Development, and Life Span. Developmental Cell, 2001, 1, 841-851.	7.0	364
96	<i>daf-12</i> encodes a nuclear receptor that regulates the dauer diapause and developmental age in <i>C. elegans</i> . Genes and Development, 2000, 14, 1512-1527.	5.9	363
97	The yeast secretory pathway is perturbed by mutations in PMR1, a member of a Ca2+ ATPase family. Cell, 1989, 58, 133-145.	28.9	557