Adam Antebi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5861088/publications.pdf

Version: 2024-02-01

66343 43889 9,876 97 42 91 citations h-index g-index papers 110 110 110 10002 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /Ov	eglock 10 ⁻	Γƒ50,742 <mark>T</mark> €
2	The Endocrine Regulation of Aging by Insulin-like Signals. Science, 2003, 299, 1346-1351.	12.6	1,204
3	The yeast secretory pathway is perturbed by mutations in PMR1, a member of a Ca2+ ATPase family. Cell, 1989, 58, 133-145.	28.9	557
4	Interventions to Slow Aging in Humans: Are We Ready?. Aging Cell, 2015, 14, 497-510.	6.7	481
5	<i>C. elegans</i> dauer formation and the molecular basis of plasticity. Genes and Development, 2008, 22, 2149-2165.	5.9	476
6	Identification of Ligands for DAF-12 that Govern Dauer Formation and Reproduction in C. elegans. Cell, 2006, 124, 1209-1223.	28.9	414
7	A Hormonal Signaling Pathway Influencing C. elegans Metabolism, Reproductive Development, and Life Span. Developmental Cell, 2001, 1, 841-851.	7.0	364
8	<i>daf-12</i> encodes a nuclear receptor that regulates the dauer diapause and developmental age in <i>C. elegans</i> . Genes and Development, 2000, 14, 1512-1527.	5.9	363
9	Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an αâ€glucosidase inhibitor or a Nrf2â€inducer. Aging Cell, 2016, 15, 872-884.	6.7	277
10	A bile acid-like steroid modulates <i>Caenorhabditis elegans</i> lifespan through nuclear receptor signaling. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5014-5019.	7.1	206
11	Small nucleoli are a cellular hallmark of longevity. Nature Communications, 2017, 8, 16083.	12.8	190
12	Hexosamine Pathway Metabolites Enhance Protein Quality Control and Prolong Life. Cell, 2014, 156, 1167-1178.	28.9	185
13	Hormonal Control of C. elegans Dauer Formation and Life Span by a Rieske-like Oxygenase. Developmental Cell, 2006, 10, 473-482.	7.0	177
14	Genetics of Aging in Caenorhabditis elegans. PLoS Genetics, 2007, 3, e129.	3.5	167
15	Hormonal signals produced by DAF-9/cytochrome P450 regulate C. elegans dauer diapause in response to environmental cues. Development (Cambridge), 2004, 131, 1765-1776.	2.5	161
16	A Conserved Endocrine Mechanism Controls the Formation of Dauer and Infective Larvae in Nematodes. Current Biology, 2009, 19, 67-71.	3.9	149
17	Nuclear Hormone Receptor Regulation of MicroRNAs Controls Developmental Progression. Science, 2009, 324, 95-98.	12.6	144
18	Nucleolar Function in Lifespan Regulation. Trends in Cell Biology, 2018, 28, 662-672.	7.9	133

#	Article	IF	CITATIONS
19	Suppression of autophagic activity by Rubicon is a signature of aging. Nature Communications, 2019, 10, 847.	12.8	132
20	Sterol Regulation of Metabolism, Homeostasis, and Development. Annual Review of Biochemistry, 2011, 80, 885-916.	11.1	122
21	A novel nuclear receptor/coregulator complex controls C. elegans lipid metabolism, larval development, and aging. Genes and Development, 2004, 18, 2120-2133.	5.9	114
22	Mitochondrial DNA level, but not active replicase, is essential for Caenorhabditis elegans development. Nucleic Acids Research, 2009, 37, 1817-1828.	14.5	100
23	A Steroid Receptor–MicroRNA Switch Regulates Life Span in Response to Signals from the Gonad. Science, 2012, 338, 1472-1476.	12.6	97
24	Regulation of longevity by the reproductive system. Experimental Gerontology, 2013, 48, 596-602.	2.8	95
25	Comparative Metabolomics Reveals Endogenous Ligands of DAF-12, a Nuclear Hormone Receptor, Regulating C.Âelegans Development and Lifespan. Cell Metabolism, 2014, 19, 73-83.	16.2	94
26	An Insulin-to-Insulin Regulatory Network Orchestrates Phenotypic Specificity in Development and Physiology. PLoS Genetics, 2014, 10, e1004225.	3.5	90
27	The NHR-8 Nuclear Receptor Regulates Cholesterol and Bile Acid Homeostasis in C.Âelegans. Cell Metabolism, 2013, 18, 212-224.	16.2	86
28	Hormonal Signal Amplification Mediates Environmental Conditions during Development and Controls an Irreversible Commitment to Adulthood. PLoS Biology, 2012, 10, e1001306.	5.6	75
29	Cell size is a determinant of stem cell potential during aging. Science Advances, 2021, 7, eabk0271.	10.3	75
30	Dietary Restriction Induced Longevity Is Mediated by Nuclear Receptor NHR-62 in Caenorhabditis elegans. PLoS Genetics, 2013, 9, e1003651.	3.5	73
31	DRE-1/FBXO11-Dependent Degradation of BLMP-1/BLIMP-1 Governs C.Âelegans Developmental Timing and Maturation. Developmental Cell, 2014, 28, 697-710.	7.0	72
32	Mondo complexes regulate TFEB via TOR inhibition to promote longevity in response to gonadal signals. Nature Communications, 2016, 7, 10944.	12.8	71
33	Nuclear receptor signal transduction in C. elegans. WormBook, 2015, , 1-49.	5.3	69
34	Identification of C. elegans DAF-12-binding sites, response elements, and target genes. Genes and Development, 2004, 18, 2529-2544.	5.9	68
35	Regulation of the CRL4Cdt2 Ubiquitin Ligase and Cell-Cycle Exit by the SCFFbxo11 Ubiquitin Ligase. Molecular Cell, 2013, 49, 1159-1166.	9.7	67
36	DRE-1: An Evolutionarily Conserved F Box Protein that Regulates C. elegans Developmental Age. Developmental Cell, 2007, 12, 443-455.	7.0	61

#	Article	IF	Citations
37	A Novel 3-Hydroxysteroid Dehydrogenase That Regulates Reproductive Development and Longevity. PLoS Biology, 2012, 10, e1001305.	5 . 6	61
38	Larval crowding accelerates C. elegans development and reduces lifespan. PLoS Genetics, 2017, 13, e1006717.	3. 5	60
39	The Rieske oxygenase DAFâ€36 functions as a cholesterol 7â€desaturase in steroidogenic pathways governing longevity. Aging Cell, 2011, 10, 879-884.	6.7	59
40	Nuclear hormone receptors in C. elegans. WormBook, 2006, , 1-13.	5 . 3	57
41	Hexosamine pathway and (ER) protein quality control. Current Opinion in Cell Biology, 2015, 33, 14-18.	5.4	52
42	Cell cycle dynamics during diapause entry and exit in an annual killifish revealed by FUCCI technology. EvoDevo, 2019, 10, 29.	3.2	52
43	Mutation of C. elegans demethylase spr-5 extends transgenerational longevity. Cell Research, 2016, 26, 229-238.	12.0	49
44	Steroid Regulation of C. elegans Diapause, Developmental Timing, and Longevity. Current Topics in Developmental Biology, 2013, 105, 181-212.	2.2	46
45	Long Life. Neuron, 2004, 41, 1-3.	8.1	45
46	Caenorhabditis elegans nuclear receptors: insights into life traits. Trends in Endocrinology and Metabolism, 2008, 19, 153-160.	7.1	43
47	Nucleolar fibrillarin is an evolutionarily conserved regulator of bacterial pathogen resistance. Nature Communications, 2018, 9, 3607.	12.8	43
48	Intracellular Trafficking and Synaptic Function of APL-1 in Caenorhabditis elegans. PLoS ONE, 2010, 5, e12790.	2. 5	42
49	To help aging populations, classify organismal senescence. Science, 2019, 366, 576-578.	12.6	42
50	A secreted microRNA disrupts autophagy in distinct tissues of Caenorhabditis elegans upon ageing. Nature Communications, 2019, 10, 4827.	12.8	40
51	Co-chaperone p23 Regulates C. elegans Lifespan in Response to Temperature. PLoS Genetics, 2015, 11, e1005023.	3.5	37
52	Regulation of the one carbon folate cycle as a shared metabolic signature of longevity. Nature Communications, 2021, 12, 3486.	12.8	37
53	NFYB-1 regulates mitochondrial function and longevity via lysosomal prosaposin. Nature Metabolism, 2020, 2, 387-396.	11.9	35
54	HLH-30/TFEB Is a Master Regulator of Reproductive Quiescence. Developmental Cell, 2020, 53, 316-329.e5.	7.0	32

#	Article	IF	CITATIONS
55	Control of Caenorhabditis elegans life history by nuclear receptor signal transduction. Experimental Gerontology, 2006, 41, 904-909.	2.8	29
56	Mitochondrial hydrogen sulfide supplementation improves health in the $\langle i \rangle$ C. elegans $\langle i \rangle$ Duchenne muscular dystrophy model. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	27
57	Hexosamine Pathway Activation Improves Protein Homeostasis through the Integrated Stress Response. IScience, 2020, 23, 100887.	4.1	23
58	Ageing induces tissueâ€specific transcriptomic changes in <i>Caenorhabditis elegans</i> . EMBO Journal, 2022, 41, e109633.	7.8	22
59	Pluronic gel-based burrowing assay for rapid assessment of neuromuscular health in C. elegans. Scientific Reports, 2019, 9, 15246.	3.3	21
60	Polyunsaturated fatty acids and p38-MAPK link metabolic reprogramming to cytoprotective gene expression during dietary restriction. Nature Communications, 2020, 11, 4865.	12.8	21
61	RNA interference may result in unexpected phenotypes in Caenorhabditis elegans. Nucleic Acids Research, 2019, 47, 3957-3969.	14.5	19
62	LINâ€28 balances longevity and germline stem cell number in <i>Caenorhabditis elegans</i> through letâ€7 <i>/</i> AKT <i>/</i> DAFâ€16 axis. Aging Cell, 2017, 16, 113-124.	6.7	18
63	When less is more. Nature, 2007, 447, 536-537.	27.8	17
64	Leptin signaling impairs macrophage defenses against Salmonella Typhimurium. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16551-16560.	7.1	17
65	Dietary sulfur amino acid restriction upregulates DICER to confer beneficial effects. Molecular Metabolism, 2019, 29, 124-135.	6.5	15
66	Latest advances in aging research and drug discovery. Aging, 2019, 11, 9971-9981.	3.1	13
67	PHYSIOLOGY: The Tick-Tock of Aging?. Science, 2005, 310, 1911-1913.	12.6	11
68	$\mbox{N-} 1-acetylspermidine is a determinant of hair follicle stem cell fate. Journal of Cell Science, 2021, 134, .$	2.0	11
69	Evolutionarily conserved regulation of immunity by the splicing factor RNP-6/PUF60. ELife, 2020, 9, .	6.0	11
70	Tipping the Balance toward Longevity. Developmental Cell, 2004, 6, 315-316.	7.0	10
71	Syntheses and Biological Evaluation of B-Ring-Modified Analogues of Dafachronic Acid A. Organic Letters, 2008, 10, 3643-3645.	4.6	10
72	A novel EI-GC/MS method for the accurate quantification of anti-aging compound oleoylethanolamine in <i>C. elegans</i>	2.7	10

#	Article	IF	Citations
73	miR-1 coordinately regulates lysosomal ν -ATPase and biogenesis to impact proteotoxicity and muscle function during aging. ELife, 2021, 10, .	6.0	9
74	Regulation of Neuronal APL-1 Expression by Cholesterol Starvation. PLoS ONE, 2012, 7, e32038.	2.5	9
75	Oral Supplementation of Glucosamine Fails to Alleviate Acute Kidney Injury in Renal Ischemia-Reperfusion Damage. PLoS ONE, 2016, 11, e0161315.	2.5	9
76	Optimization of mass spectrometry settings for steroidomic analysis in young and old killifish. Analytical and Bioanalytical Chemistry, 2020, 412, 4089-4099.	3.7	8
77	A Photocleavable Masked Nuclearâ€Receptor Ligand Enables Temporal Control of <i>C.â€elegans</i> Development. Angewandte Chemie - International Edition, 2014, 53, 2110-2113.	13.8	7
78	Comparison of ESIâ€MS/MS and APCIâ€MS methods for the quantification of folic acid analogs in <scp><i>Comparison of ESIâ€MS/MS and APCIâ€MS methods for the quantification of folic acid analogs in <scp><i>Comparison of ESIâ€MS/MS and APCIâ€MS methods for the quantification of folic acid analogs in <scp><i>Comparison of ESIâ€MS/MS and APCIâ€MS methods for the quantification of folic acid analogs in <scp><i>Comparison of ESIâ€MS/MS and APCIâ€MS methods for the quantification of folic acid analogs in <scp><i>Comparison of ESIâ€MS/MS and APCIâ€MS methods for the quantification of folic acid analogs in <scp><i>Comparison of ESIâ€MS/MS and APCIâ€MS methods for the quantification of folic acid analogs in <scp><i>Comparison of ESIâ€MS/MS and APCIâ€MS methods for the quantification of folic acid analogs in <scp><i>Comparison of ESIâ€MS/MS and APCIâ€MS methods for the quantification of folic acid analogs in <scp><i>Comparison of ESIâ€MS/MS and APCIâ€MS methods for the quantification of folic acid analogs in <scp><i>Comparison of ESIâ€MS/MS and APCIâ€MS and APCIâ€MS</i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp></i></scp>	1.6	6
79	Sperm cryopreservation and in vitro fertilization techniques for the African turquoise killifish Nothobranchius furzeri. Scientific Reports, 2021, 11, 17145.	3.3	6
80	Identification of a Novel Link between the Intermediate Filament Organizer IFO-1 and Cholesterol Metabolism in the Caenorhabditis elegans Intestine. International Journal of Molecular Sciences, 2020, 21, 8219.	4.1	5
81	The inherent challenges of classifying senescence—Response. Science, 2020, 368, 595-596.	12.6	5
82	Mass spectrometric characterization of cyclic dinucleotides (CDNs) in vivo. Analytical and Bioanalytical Chemistry, 2021, 413, 6457-6468.	3.7	5
83	Inside Insulin Signaling, Communication Is Key to Long Life. Science of Aging Knowledge Environment: SAGE KE, 2004, 2004, pe25-pe25.	0.8	5
84	Announcements from your Editorial Team. Aging Cell, 2009, 8, 1-1.	6.7	4
85	Meeting Report: Aging Research and Drug Discovery. Aging, 2022, 14, 530-543.	3.1	4
86	A systematic analysis of diet-induced nephroprotection reveals overlapping changes in cysteine catabolism. Translational Research, 2022, 244, 32-46.	5.0	4
87	The prepared mind of the worm. Cell Metabolism, 2005, 1, 157-158.	16.2	2
88	Editorial. Aging Cell, 2013, 12, 1-1.	6.7	1
89	Editorial. Aging Cell, 2014, 13, 1-1.	6.7	1
90	Developmental Timing: Honey, I Reprogrammed the Kids. Current Biology, 2019, 29, R420-R422.	3.9	1

ADAM ANTEBI

#	Article	IF	CITATIONS
91	Welcome to the new Editorial Board. Aging Cell, 2006, 5, 201-201.	6.7	O
92	A new series: ?Hot Topics? in aging research. Aging Cell, 2007, 6, 133-133.	6.7	0
93	Aging Cell manuscripts on the road to PubMed Central: shifting from manual to automatic transmission. Aging Cell, 2008, 7, 447-447.	6.7	0
94	Aging Cell Prize for Best Paper. Aging Cell, 2009, 8, 345-345.	6.7	0
95	Aging Cell Prize for Best Paper 2009. Aging Cell, 2010, 9, 650-650.	6.7	O
96	Aging Cell Prize for Best Paper 2010. Aging Cell, 2011, 10, 1092-1092.	6.7	0
97	Aging Cell Prize for Best Paper 2012. Aging Cell, 2013, 12, 1148-1148.	6.7	O