
Haifeng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5861052/publications.pdf Version: 2024-02-01

HAIFENC CHEN

#	Article	IF	CITATIONS
1	Spraying Fabrication of Durable and Transparent Coatings for Anti-Icing Application: Dynamic Water Repellency, Icing Delay, and Ice Adhesion. ACS Applied Materials & Interfaces, 2019, 11, 3590-3598.	4.0	157
2	Recent Progress in Preparation and Anti-Icing Applications of Superhydrophobic Coatings. Coatings, 2018, 8, 208.	1.2	118
3	Anti-icing performance of the superhydrophobic surface with micro-cubic array structures fabricated by plasma etching. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124180.	2.3	73
4	Superhydrophobic F-SiO2@PDMS composite coatings prepared by a two-step spraying method for the interface erosion mechanism and anti-corrosive applications. Chemical Engineering Journal, 2021, 413, 127455.	6.6	68
5	Spraying Preparation of Eco-Friendly Superhydrophobic Coatings with Ultralow Water Adhesion for Effective Anticorrosion and Antipollution. ACS Applied Materials & Interfaces, 2020, 12, 25484-25493.	4.0	61
6	Facile spraying fabrication of highly flexible and mechanically robust superhydrophobic F-SiO ₂ @PDMS coatings for self-cleaning and drag-reduction applications. New Journal of Chemistry, 2018, 42, 18208-18216.	1.4	58
7	A combination structure of microblock and nanohair fabricated by chemical etching for excellent water repellency and icephobicity. Applied Surface Science, 2018, 455, 883-890.	3.1	48
8	Understanding the frosting and defrosting mechanism on the superhydrophobic surfaces with hierarchical structures for enhancing anti-frosting performance. Applied Thermal Engineering, 2019, 156, 111-118.	3.0	46
9	ZnO-embedded BiOI hybrid nanoflakes: Synthesis, characterization, and improved photocatalytic properties. Materials and Design, 2017, 122, 90-101.	3.3	43
10	Anti/de-icing performance of the one-step electrodeposited superhydrophobic surfaces: Role of surface polarity regulated by hydrocarbon radical length. Chemical Engineering Journal, 2022, 431, 133276.	6.6	31
11	Rationally Designed Nanostructure Features on Superhydrophobic Surfaces for Enhancing Self-Propelling Dynamics of Condensed Droplets. ACS Sustainable Chemistry and Engineering, 2019, 7, 2702-2708.	3.2	30
12	Rational Fabrication of Superhydrophobic Nanocone Surface for Dynamic Water Repellency and Anti-icing Potential. Journal of Bionic Engineering, 2019, 16, 27-37.	2.7	30
13	Bioinspired Fabrication of Hierarchical-Structured Superhydrophobic Surfaces To Understand Droplet Bouncing Dynamics for Enhancing Water Repellency. Journal of Physical Chemistry C, 2018, 122, 7312-7320.	1.5	29
14	Facilely fabricating superhydrophobic coated-mesh materials for effective oil-water separation: Effect of mesh size towards various organic liquids. Journal of Materials Science and Technology, 2020, 51, 151-160.	5.6	27
15	Facilely Fabricating Superhydrophobic Resin-based Coatings with Lower Water Freezing Temperature and Ice Adhesion for Anti-icing Application. Journal of Bionic Engineering, 2019, 16, 794-805.	2.7	19
16	Droplet Directional Movement on the Homogeneously Structured Superhydrophobic Surface with the Gradient Non-Wettability. Langmuir, 2020, 36, 880-888.	1.6	19
17	Rational Design of the Nanostructure Features on Superhydrophobic Surfaces for Enhanced Dynamic Water Repellency. ACS Sustainable Chemistry and Engineering, 2018, 6, 9958-9965.	3.2	15
18	Statistically understanding the roles of nanostructure features in interfacial ice nucleation for enhancing icing delay performance. Physical Chemistry Chemical Physics, 2019, 21, 19785-19794.	1.3	14

HAIFENG CHEN

#	Article	IF	CITATIONS
19	Rationally Regulating the Mechanical Performance of Porous PDMS Coatings for the Enhanced Icephobicity toward Large-Scale Ice. Langmuir, 2022, 38, 937-944.	1.6	12
20	Multi-type nanoparticles in superhydrophobic PU-based coatings towards self-cleaning, self-healing and mechanochemical durability. Progress in Organic Coatings, 2021, 159, 106451.	1.9	10
21	Selective nucleation of ice crystals depending on the inclination angle of nanostructures. Physical Chemistry Chemical Physics, 2020, 22, 1168-1173.	1.3	6
22	ZnO Porous Nanosheets with Partial Surface Modification for Enhanced Charges Separation and High Photocatalytic Activity Under Solar Irradiation. Nanoscale Research Letters, 2019, 14, 151.	3.1	4
23	Understanding the Solid–Ice Interface Mechanism on the Hydrophobic Nano-Pillar Structure Epoxy Surface for Reducing Ice Adhesion. Coatings, 2020, 10, 1043.	1.2	4
24	Green Synthesis of Mechanical Robust Superhydrophobic CNT@PU Coatings with High Flexibility for Extensive Applications. Journal of Bionic Engineering, 2021, 18, 40-54.	2.7	4
25	Patterning Configuration of Surface Hydrophilicity by Graphene Nanosheet towards the Inhibition of Ice Nucleation and Growth. Coatings, 2022, 12, 52.	1.2	1