Alejandro Flores

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5860923/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hillslope Hydrology in Global Change Research and Earth System Modeling. Water Resources Research, 2019, 55, 1737-1772.	4.2	281
2	A simplified approach for estimating soil carbon and nitrogen stocks in semi-arid complex terrain. Geoderma, 2011, 165, 1-11.	5.1	96
3	Snow distribution, melt and surface water inputs to the soil in the mountain rain–snow transition zone. Journal of Hydrology, 2014, 519, 190-204.	5.4	61
4	Hillslope asymmetry maps reveal widespread, multiâ€scale organization. Geophysical Research Letters, 2012, 39, .	4.0	59
5	Impact of Hillslope-Scale Organization of Topography, Soil Moisture, Soil Temperature, and Vegetation on Modeling Surface Microwave Radiation Emission. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47, 2557-2571.	6.3	43
6	Channel-reach morphology dependence on energy, scale, and hydroclimatic processes with implications for prediction using geospatial data. Water Resources Research, 2006, 42, .	4.2	42
7	Insights into the physical processes controlling correlations between snow distribution and terrain properties. Water Resources Research, 2014, 50, 4545-4563.	4.2	37
8	Steering operational synergies in terrestrial observation networks: opportunity for advancing Earth system dynamics modelling. Earth System Dynamics, 2018, 9, 593-609.	7.1	28
9	Isotopic evidence for lateral flow and diffusive transport, but not sublimation, in a sloped seasonal snowpack, Idaho, USA. Geophysical Research Letters, 2016, 43, 3298-3306.	4.0	27
10	Leveraging Environmental Research and Observation Networks to Advance Soil Carbon Science. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1047-1055.	3.0	24
11	Hydrologic data assimilation with a hillslopeâ€scaleâ€resolving model and L band radar observations: Synthetic experiments with the ensemble Kalman filter. Water Resources Research, 2012, 48, .	4.2	23
12	Dynamical Precipitation Downscaling for Hydrologic Applications Using WRF 4D-Var Data Assimilation: Implications for GPM Era. Journal of Hydrometeorology, 2015, 16, 811-829.	1.9	21
13	Application of a hillslope-scale soil moisture data assimilation system to military trafficability assessment. Journal of Terramechanics, 2014, 51, 53-66.	3.1	18
14	A physiographic approach to downscaling fractional snow cover data in mountainous regions. Remote Sensing of Environment, 2014, 152, 413-425.	11.0	18
15	Combined Assimilation of Satellite Precipitation and Soil Moisture: A Case Study Using TRMM and SMOS Data. Monthly Weather Review, 2017, 145, 4997-5014.	1.4	17
16	Bedrock infiltration estimates from a catchment water storage-based modeling approach in the rain snow transition zone. Journal of Hydrology, 2015, 525, 231-248.	5.4	16
17	Reproducibility of soil moisture ensembles when representing soil parameter uncertainty using a Latin Hypercube–based approach with correlation control. Water Resources Research, 2010, 46, . 	4.2	15
18	From Soils to Streams: Connecting Terrestrial Carbon Transformation, Chemical Weathering, and Solute Export Across Hydrological Regimes. Water Resources Research, 2022, 58, .	4.2	14

#	Article	IF	CITATIONS
19	Persistent Metal Contamination Limits Lotic Ecosystem Heterotrophic Metabolism after More Than 100 Years of Exposure: A Novel Application of the Resazurin Resorufin Smart Tracer. Environmental Science & Technology, 2012, 46, 9862-9871.	10.0	13
20	Empirical Methods for Remote Sensing of Nitrogen in Drylands May Lead to Unreliable Interpretation of Ecosystem Function. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 3993-4004.	6.3	13
21	Identifying Irrigated Areas in the Snake River Plain, Idaho: Evaluating Performance across Composting Algorithms, Spectral Indices, and Sensors. Remote Sensing, 2017, 9, 546.	4.0	12
22	Approximating Input Data to a Snowmelt Model Using Weather Research and Forecasting Model Outputs in Lieu of Meteorological Measurements. Journal of Hydrometeorology, 2019, 20, 847-862.	1.9	12
23	Coupling biophysical processes and water rights to simulate spatially distributed water use in an intensively managed hydrologic system. Hydrology and Earth System Sciences, 2017, 21, 3671-3685.	4.9	11
24	Form and function relationships revealed by longâ€ŧerm research in a semiarid mountain catchment. Wiley Interdisciplinary Reviews: Water, 2018, 5, e1267.	6.5	11
25	Assessing a Multi-Platform Data Fusion Technique in Capturing Spatiotemporal Dynamics of Heterogeneous Dryland Ecosystems in Topographically Complex Terrain. Remote Sensing, 2017, 9, 981.	4.0	10
26	Regional Scale Dryland Vegetation Classification with an Integrated Lidar-Hyperspectral Approach. Remote Sensing, 2019, 11, 2141.	4.0	10
27	Recognizing and modeling variable drawdown due to evapotranspiration in a semiarid riparian zone considering local differences in vegetation and distance from a river source. Water Resources Research, 2013, 49, 1030-1039.	4.2	7
28	The Impact of Initial Snow Conditions on the Numerical Weather Simulation of a Northern Rockies Atmospheric River. Journal of Hydrometeorology, 2021, 22, 155-167.	1.9	6
29	Climate Change and Curtailment: Evaluating Water Management Practices in the Context of Changing Runoff Regimes in a Snowmelt-Dominated Basin. Water (Switzerland), 2018, 10, 1490.	2.7	4
30	Developing and optimizing shrub parameters representing sagebrush (<i>Artemisia</i> spp.) ecosystems in the northern Great Basin using the Ecosystem Demography (EDv2.2) model. Geoscientific Model Development, 2019, 12, 4585-4601.	3.6	3
31	Topographically moderated soil water seasons impact vegetation dynamics in semiarid mountain catchments: Illustrations from the Dry Creek Experimental Watershed, Idaho, <scp>USA</scp> . Hydrological Processes, 2021, 35, e14421.	2.6	3
32	Performance of the ecosystem demography model (EDv2.2) in simulating gross primary production capacity and activity in a dryland study area. Agricultural and Forest Meteorology, 2021, 297, 108270.	4.8	2
33	Evaluating longâ€ŧerm <scp>Oneâ€Way Atmosphereâ€Hydrology</scp> simulations and the impacts of <scp>Twoâ€Way</scp> coupling in four mountain watersheds. Hydrological Processes, 2022, 36, .	2.6	2
34	Including Variability across Climate Change Projections in Assessing Impacts on Water Resources in an Intensively Managed Landscape. Water (Switzerland), 2019, 11, 286.	2.7	1
35	Understanding the effect of fire on vegetation composition and gross primary production in a semi-arid shrubland ecosystem using the Ecosystem Demography (EDv2.2) model. Biogeosciences, 2021, 18, 2027-2045.	3.3	0