Eunju Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5860854/publications.pdf Version: 2024-02-01

FUNIL KANC

#	Article	IF	CITATIONS
1	Haploidy in somatic cells is induced by mature oocytes in mice. Communications Biology, 2022, 5, 95.	4.4	7
2	Horizontal mtDNA transfer between cells is common during mouse development. IScience, 2022, 25, 103901.	4.1	7
3	Efficient method for generating homozygous embryonic stem cells in mice. Journal of Animal Reproduciton and Biotechnology, 2022, 37, 48-54.	0.6	1
4	Artificial Oocyte: Development and Potential Application. Cells, 2022, 11, 1135.	4.1	3
5	Mitochondrial genome mutations and neuronal dysfunction of induced pluripotent stem cells derived from patients with Alzheimer's disease. Cell Proliferation, 2022, 55, .	5.3	6
6	Germline transmission of donor, maternal and paternal mtDNA in primates. Human Reproduction, 2021, 36, 493-505.	0.9	22
7	Mitochondrial gene mutations in pediatric septic shock. Pediatric Research, 2021, 90, 1016-1022.	2.3	4
8	De Novo Development of mtDNA Deletion Due to Decreased POLG and SSBP1 Expression in Humans. Genes, 2021, 12, 284.	2.4	9
9	Long-term effects of human induced pluripotent stem cell-derived retinal cell transplantation in Pde6b knockout rats. Experimental and Molecular Medicine, 2021, 53, 631-642.	7.7	22
10	Mitochondrial DNA Haplogroup Related to the Prevalence of Helicobacter pylori. Cells, 2021, 10, 2482.	4.1	1
11	Efficient hepatic differentiation and regeneration potential under xeno-free conditions using mass-producible amnion-derived mesenchymal stem cells. Stem Cell Research and Therapy, 2021, 12, 569.	5.5	6
12	Hormone induced recipients for embryo transfer in mice. Journal of Animal Reproduciton and Biotechnology, 2021, 36, 247-252.	0.6	3
13	Deleterious mtDNA mutations are common in mature oocytes. Biology of Reproduction, 2020, 102, 607-619.	2.7	15
14	The Rho-associated kinase inhibitor fasudil can replace Y-27632 for use in human pluripotent stem cell research. PLoS ONE, 2020, 15, e0233057.	2.5	16
15	Hepatogenic Potential and Liver Regeneration Effect of Human Liver-derived Mesenchymal-Like Stem Cells. Cells, 2020, 9, 1521.	4.1	17
16	Fasudil Increases the Establishment of Somatic Cell Nuclear Transfer Embryonic Stem Cells in Mouse. Journal of Animal Reproduciton and Biotechnology, 2020, 35, 21-27.	0.6	5
17	Reply to: Reversion after replacement of mitochondrial DNA. Nature, 2019, 574, E12-E13.	27.8	6
18	ldentification of extremely rare mitochondrial disorders by whole exome sequencing. Journal of Human Genetics, 2019, 64, 1117-1125.	2.3	10

Eunju Kang

#	Article	IF	CITATIONS
19	Therapeutic effect of mesenchymal stem cells derived from human umbilical cord in rabbit temporomandibular joint model of osteoarthritis. Scientific Reports, 2019, 9, 13854.	3.3	33
20	Mitochondrial genome mutations in mesenchymal stem cells derived from human dental induced pluripotent stem cells. BMB Reports, 2019, 52, 689-694.	2.4	8
21	Stem cells and reproduction. BMB Reports, 2019, 52, 482-489.	2.4	6
22	Germline and somatic mtDNA mutations in mouse aging. PLoS ONE, 2018, 13, e0201304.	2.5	24
23	Ma et al. reply. Nature, 2018, 560, E10-E23.	27.8	37
24	Correction of a pathogenic gene mutation in human embryos. Nature, 2017, 548, 413-419.	27.8	781
25	Functional Human Oocytes Generated by Transfer of Polar Body Genomes. Cell Stem Cell, 2017, 20, 112-119.	11.1	76
26	Concise Review: Embryonic Stem Cells Derived by Somatic Cell Nuclear Transfer: A Horse in the Race?. Stem Cells, 2017, 35, 26-34.	3.2	35
27	Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature, 2016, 540, 270-275.	27.8	264
28	Age-Related Accumulation of Somatic Mitochondrial DNA Mutations in Adult-Derived Human iPSCs. Cell Stem Cell, 2016, 18, 625-636.	11.1	190
29	Incompatibility between Nuclear and Mitochondrial Genomes Contributes to an Interspecies Reproductive Barrier. Cell Metabolism, 2016, 24, 283-294.	16.2	95
30	Metabolic rescue in pluripotent cells from patients with mtDNA disease. Nature, 2015, 524, 234-238.	27.8	166
31	Nuclear reprogramming by interphase cytoplasm of two-cell mouse embryos. Nature, 2014, 509, 101-104.	27.8	48
32	Comparable Frequencies of Coding Mutations and Loss of Imprinting in Human Pluripotent Cells Derived by Nuclear Transfer and Defined Factors. Cell Stem Cell, 2014, 15, 634-642.	11.1	113
33	Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature, 2014, 511, 177-183.	27.8	307
34	Human Embryonic Stem Cells Derived by Somatic Cell Nuclear Transfer. Cell, 2013, 153, 1228-1238.	28.9	729