Amy C Morrison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/586061/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Knowledge gaps in the epidemiology of severe dengue impede vaccine evaluation. Lancet Infectious Diseases, The, 2022, 22, e42-e51.	4.6	20
2	Efficacy of a spatial repellent for control of <i>Aedes</i> -borne virus transmission: A cluster-randomized trial in Iquitos, Peru. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	23
3	Potential for community based surveillance of febrile diseases: Feasibility of self-administered rapid diagnostic tests in Iquitos, Peru and Phnom Penh, Cambodia. PLoS Neglected Tropical Diseases, 2021, 15, e0009307.	1.3	2
4	Rapid evolution of knockdown resistance haplotypes in response to pyrethroid selection in <i>Aedes aegypti</i> . Evolutionary Applications, 2021, 14, 2098-2113.	1.5	14
5	The impact of dengue illness on social distancing and caregiving behavior. PLoS Neglected Tropical Diseases, 2021, 15, e0009614.	1.3	0
6	A dengue outbreak in a rural community in Northern Coastal Ecuador: An analysis using unmanned aerial vehicle mapping. PLoS Neglected Tropical Diseases, 2021, 15, e0009679.	1.3	11
7	Disease-driven reduction in human mobility influences human-mosquito contacts and dengue transmission dynamics. PLoS Computational Biology, 2021, 17, e1008627.	1.5	19
8	Measuring health related quality of life for dengue patients in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2020, 14, e0008477.	1.3	4
9	Heterogeneity of Dengue Illness in Community-Based Prospective Study, Iquitos, Peru. Emerging Infectious Diseases, 2020, 26, 2077-2086.	2.0	8
10	Guaroa Virus and Plasmodium vivax Co-Infections, Peruvian Amazon. Emerging Infectious Diseases, 2020, 26, 731-737.	2.0	4
11	The impact of insecticide treated curtains on dengue virus transmission: A cluster randomized trial in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2020, 14, e0008097.	1.3	18
12	Optimizing the deployment of ultra-low volume and targeted indoor residual spraying for dengue outbreak response. PLoS Computational Biology, 2020, 16, e1007743.	1.5	27
13	Title is missing!. , 2020, 16, e1007743.		0
14	Title is missing!. , 2020, 16, e1007743.		0
15	Title is missing!. , 2020, 16, e1007743.		0
16	Title is missing!. , 2020, 16, e1007743.		0
17	Model-based assessment of public health impact and cost-effectiveness of dengue vaccination following screening for prior exposure. PLoS Neglected Tropical Diseases, 2019, 13, e0007482.	1.3	23
18	Potential Use of Community-Based Rapid Diagnostic Tests for Febrile Illnesses: Formative Research in Peru and Cambodia. PLoS Neglected Tropical Diseases, 2019, 13, e0007773.	1.3	4

#	Article	IF	CITATIONS
19	The genetic structure of Aedes aegypti populations is driven by boat traffic in the Peruvian Amazon. PLoS Neglected Tropical Diseases, 2019, 13, e0007552.	1.3	16
20	Dengue illness impacts daily human mobility patterns in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2019, 13, e0007756.	1.3	17
21	Biased efficacy estimates in phase-III dengue vaccine trials due to heterogeneous exposure and differential detectability of primary infections across trial arms. PLoS ONE, 2019, 14, e0210041.	1.1	606
22	Estimating the impact of city-wide Aedes aegypti population control: An observational study in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2019, 13, e0007255.	1.3	22
23	Acceptability of Aedes aegypti blood feeding on dengue virus-infected human volunteers for vector competence studies in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2019, 13, e0007090.	1.3	6
24	An agent-based model of dengue virus transmission shows how uncertainty about breakthrough infections influences vaccination impact projections. PLoS Computational Biology, 2019, 15, e1006710.	1.5	31
25	Feasibility of feeding Aedes aegypti mosquitoes on dengue virus-infected human volunteers for vector competence studies in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2019, 13, e0007116.	1.3	10
26	"Zika is everywhere― A qualitative exploration of knowledge, attitudes and practices towards Zika virus among women of reproductive age in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2018, 12, e0006708.	1.3	19
27	Efficacy of Aedes aegypti control by indoor Ultra Low Volume (ULV) insecticide spraying in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2018, 12, e0006378.	1.3	46
28	Rapid design and fielding of four diagnostic technologies in Sierra Leone, Thailand, Peru, and Australia: Successes and challenges faced introducing these biosensors. Sensing and Bio-Sensing Research, 2018, 20, 22-33.	2.2	8
29	Model-based analysis of experimental data from interconnected, row-configured huts elucidates multifaceted effects of a volatile chemical on Aedes aegypti mosquitoes. Parasites and Vectors, 2018, 11, 365.	1.0	8
30	Contributions from the silent majority dominate dengue virus transmission. PLoS Pathogens, 2018, 14, e1006965.	2.1	118
31	The relationship between entomological indicators of Aedes aegypti abundance and dengue virus infection. PLoS Neglected Tropical Diseases, 2017, 11, e0005429.	1.3	81
32	When communities are really in control: ethical issues surrounding community mobilisation for dengue prevention in Mexico and Nicaragua. BMC Public Health, 2017, 17, 410.	1.2	14
33	Serologic Evidence of Scrub Typhus in the Peruvian Amazon. Emerging Infectious Diseases, 2017, 23, 1389-1391.	2.0	38
34	Experiences with insecticide-treated curtains: a qualitative study in Iquitos, Peru. BMC Public Health, 2016, 16, 582.	1.2	9
35	Rickettsial Disease in the Peruvian Amazon Basin. PLoS Neglected Tropical Diseases, 2016, 10, e0004843.	1.3	19
36	Design and Testing of Novel Lethal Ovitrap to Reduce Populations of Aedes Mosquitoes: Community-Based Participatory Research between Industry, Academia and Communities in Peru and Thailand. PLoS ONE, 2016, 11, e0160386.	1.1	16

#	Article	IF	CITATIONS
37	Calling in sick: impacts of fever on intra-urban human mobility. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160390.	1.2	31
38	Dengue Viruses and Lifelong Immunity: Reevaluating the Conventional Wisdom. Journal of Infectious Diseases, 2016, 214, 979-981.	1.9	14
39	Incomplete Protection against Dengue Virus Type 2 Re-infection in Peru. PLoS Neglected Tropical Diseases, 2016, 10, e0004398.	1.3	85
40	Factors Associated with Correct and Consistent Insecticide Treated Curtain Use in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2016, 10, e0004409.	1.3	10
41	Quantifying the Epidemiological Impact of Vector Control on Dengue. PLoS Neglected Tropical Diseases, 2016, 10, e0004588.	1.3	70
42	Prevalencia de microfilariasis en la población humana de Iquitos y zonas peri urbanas, Loreto, Perú. Ciencia Amazónica (Iquitos), 2016, 6, 3.	0.0	0
43	Dengue Knowledge and Preventive Practices in Iquitos, Peru. American Journal of Tropical Medicine and Hygiene, 2015, 93, 1330-1337.	0.6	34
44	Weather Regulates Location, Timing, and Intensity of Dengue Virus Transmission between Humans and Mosquitoes. PLoS Neglected Tropical Diseases, 2015, 9, e0003957.	1.3	45
45	Multicountry Prospective Clinical Evaluation of Two Enzyme-Linked Immunosorbent Assays and Two Rapid Diagnostic Tests for Diagnosing Dengue Fever. Journal of Clinical Microbiology, 2015, 53, 1092-1102.	1.8	45
46	River Boats Contribute to the Regional Spread of the Dengue Vector Aedes aegypti in the Peruvian Amazon. PLoS Neglected Tropical Diseases, 2015, 9, e0003648.	1.3	31
47	A Critical Assessment of Vector Control for Dengue Prevention. PLoS Neglected Tropical Diseases, 2015, 9, e0003655.	1.3	328
48	Evidence forAedes aegypti(Diptera: Culicidae) Oviposition on Boats in the Peruvian Amazon. Journal of Medical Entomology, 2015, 52, 726-729.	0.9	7
49	Evaluation of Nucleic Acid Stabilization Products for Ambient Temperature Shipping and Storage of Viral RNA and Antibody in a Dried Whole Blood Format. American Journal of Tropical Medicine and Hygiene, 2015, 93, 46-53.	0.6	21
50	Lecciones aprendidas en el control de Aedes aegypti para afrontar el dengue y la emergencia de chikungunya en Iquitos, Perú. Revista Peruana De Medicina De Experimental Y Salud Publica, 2015, 32, 172.	0.1	9
51	Strengths and Weaknesses of Global Positioning System (GPS) Data-Loggers and Semi-structured Interviews for Capturing Fine-scale Human Mobility: Findings from Iquitos, Peru. PLoS Neglected Tropical Diseases, 2014, 8, e2888.	1.3	59
52	Dengue Disease Surveillance: Improving Data for Dengue Control. PLoS Neglected Tropical Diseases, 2014, 8, e3311.	1.3	14
53	Patterns of Geographic Expansion of Aedes aegypti in the Peruvian Amazon. PLoS Neglected Tropical Diseases, 2014, 8, e3033.	1.3	52
54	Determinants of Heterogeneous Blood Feeding Patterns by Aedes aegypti in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2014, 8, e2702.	1.3	63

#	Article	IF	CITATIONS
55	Long-Term and Seasonal Dynamics of Dengue in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2014, 8, e3003.	1.3	96
56	Shifting Patterns of Aedes aegypti Fine Scale Spatial Clustering in Iquitos, Peru. PLoS Neglected Tropical Diseases, 2014, 8, e3038.	1.3	68
57	Theory and data for simulating fine-scale human movement in an urban environment. Journal of the Royal Society Interface, 2014, 11, 20140642.	1.5	53
58	Hot temperatures can force delayed mosquito outbreaks via sequential changes in Aedes aegypti demographic parameters in autocorrelated environments. Acta Tropica, 2014, 129, 15-24.	0.9	49
59	Lineage II of Southeast Asian/American DENV-2 is Associated with a Severe Dengue Outbreak in the Peruvian Amazon. American Journal of Tropical Medicine and Hygiene, 2014, 91, 611-620.	0.6	50
60	Time-varying, serotype-specific force of infection of dengue virus. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2694-702.	3.3	105
61	Evaluation of Dengue NS1 Antigen Rapid Tests and ELISA Kits Using Clinical Samples. PLoS ONE, 2014, 9, e113411.	1.1	119
62	Characterization of a novel flavivirus isolated from Culex (Melanoconion) ocossa mosquitoes from Iquitos, Peru. Journal of General Virology, 2013, 94, 1266-1272.	1.3	32
63	Sequential Waves of Gene Expression in Patients with Clinically Defined Dengue Illnesses Reveal Subtle Disease Phases and Predict Disease Severity. PLoS Neglected Tropical Diseases, 2013, 7, e2298.	1.3	64
64	Contact Irritant Responses of Aedes aegypti Using Sublethal Concentration and Focal Application of Pyrethroid Chemicals. PLoS Neglected Tropical Diseases, 2013, 7, e2074.	1.3	30
65	Performance of the Tourniquet Test for Diagnosing Dengue in Peru. American Journal of Tropical Medicine and Hygiene, 2013, 89, 99-104.	0.6	15
66	House-to-house human movement drives dengue virus transmission. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 994-999.	3.3	416
67	Reduced Risk of Disease During Postsecondary Dengue Virus Infections. Journal of Infectious Diseases, 2013, 208, 1026-1033.	1.9	128
68	Using GPS Technology to Quantify Human Mobility, Dynamic Contacts and Infectious Disease Dynamics in a Resource-Poor Urban Environment. PLoS ONE, 2013, 8, e58802.	1.1	177
69	Modeling the Dynamics of a Non-Limited and a Self-Limited Gene Drive System in Structured Aedes aegypti Populations. PLoS ONE, 2013, 8, e83354.	1.1	18
70	Fine Scale Spatiotemporal Clustering of Dengue Virus Transmission in Children and Aedes aegypti in Rural Thai Villages. PLoS Neglected Tropical Diseases, 2012, 6, e1730.	1.3	127
71	Spatial Dimensions of Dengue Virus Transmission across Interepidemic and Epidemic Periods in Iquitos, Peru (1999–2003). PLoS Neglected Tropical Diseases, 2012, 6, e1472.	1.3	74
72	Linking Oviposition Site Choice to Offspring Fitness in Aedes aegypti: Consequences for Targeted Larval Control of Dengue Vectors. PLoS Neglected Tropical Diseases, 2012, 6, e1632.	1.3	42

#	Article	IF	CITATIONS
73	Underrecognized Mildly Symptomatic Viremic Dengue Virus Infections in Rural Thai Schools and Villages. Journal of Infectious Diseases, 2012, 206, 389-398.	1.9	84
74	A Three-Component Biomarker Panel for Prediction of Dengue Hemorrhagic Fever. American Journal of Tropical Medicine and Hygiene, 2012, 86, 341-348.	0.6	74
75	Microsatellite-Based Parentage Analysis of <i>Aedes aegypti</i> (Diptera: Culicidae) Using Nonlethal DNA Sampling. Journal of Medical Entomology, 2012, 49, 85-93.	0.9	7
76	Serologic Evidence for Human Hantavirus Infection in Peru. Vector-Borne and Zoonotic Diseases, 2012, 12, 683-689.	0.6	13
77	Assessing the Feasibility of Controlling Aedes aegypti with Transgenic Methods: A Model-Based Evaluation. PLoS ONE, 2012, 7, e52235.	1.1	30
78	Nonlinear impacts of climatic variability on the densityâ€dependent regulation of an insect vector of disease. Global Change Biology, 2012, 18, 457-468.	4.2	84
79	Discovery Proteomics and Nonparametric Modeling Pipeline in the Development of a Candidate Biomarker Panel for Dengue Hemorrhagic Fever. Clinical and Translational Science, 2012, 5, 8-20.	1.5	33
80	Evaluation of Location-Specific Predictions by a Detailed Simulation Model of Aedes aegypti Populations. PLoS ONE, 2011, 6, e22701.	1.1	24
81	Sampling Considerations for Designing <i>Aedes aegypti</i> (Diptera: Culicidae) Oviposition Studies in Iquitos, Peru: Substrate Preference, Diurnal Periodicity, and Gonotrophic Cycle Length. Journal of Medical Entomology, 2011, 48, 45-52.	0.9	32
82	Prevalence and Risk Factors for Encephalomyocarditis Virus Infection in Peru. Vector-Borne and Zoonotic Diseases, 2011, 11, 367-374.	0.6	32
83	Parameterization and Sensitivity Analysis of a Complex Simulation Model for Mosquito Population Dynamics, Dengue Transmission, and Their Control. American Journal of Tropical Medicine and Hygiene, 2011, 85, 257-264.	0.6	54
84	Initial Assessment of the Acceptability of a Push-Pull Aedes aegypti Control Strategy in Iquitos, Peru and Kanchanaburi, Thailand. American Journal of Tropical Medicine and Hygiene, 2011, 84, 208-217.	0.6	44
85	Oviposition Site Selection by the Dengue Vector Aedes aegypti and Its Implications for Dengue Control. PLoS Neglected Tropical Diseases, 2011, 5, e1015.	1.3	143
86	Epidemiology of influenzaâ€like illness in the Amazon Basin of Peru, 2008–2009. Influenza and Other Respiratory Viruses, 2010, 4, 235-243.	1.5	21
87	Epidemiology of Spotted Fever Group and Typhus Group Rickettsial Infection in the Amazon Basin of Peru. American Journal of Tropical Medicine and Hygiene, 2010, 82, 683-690.	0.6	33
88	Assessing and Maximizing the Acceptability of Global Positioning System Device Use for Studying the Role of Human Movement in Dengue Virus Transmission in Iquitos, Peru. American Journal of Tropical Medicine and Hygiene, 2010, 82, 723-730.	0.6	48
89	Epidemiology of Dengue Virus in Iquitos, Peru 1999 to 2005: Interepidemic and Epidemic Patterns of Transmission. PLoS Neglected Tropical Diseases, 2010, 4, e670.	1.3	159
90	Arboviral Etiologies of Acute Febrile Illnesses in Western South America, 2000–2007. PLoS Neglected Tropical Diseases, 2010, 4, e787.	1.3	205

#	Article	IF	CITATIONS
91	Vector Dynamics and Transmission of Dengue Virus: Implications for Dengue Surveillance and Prevention Strategies. Current Topics in Microbiology and Immunology, 2010, 338, 115-128.	0.7	123
92	Guaroa Virus Infection among Humans in Bolivia and Peru. American Journal of Tropical Medicine and Hygiene, 2010, 83, 714-721.	0.6	18
93	Longitudinal Field Studies Will Guide a Paradigm Shift in Dengue Prevention. , 2010, , 139-161.		11
94	Characteristics of the Spatial Pattern of the Dengue Vector, Aedes aegypti, in Iquitos, Peru. Advances in Spatial Science, 2010, , 203-225.	0.3	106
95	Using adult mosquitoes to transfer insecticides to <i>Aedes aegypti</i> larval habitats. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11530-11534.	3.3	160
96	Dengue Virus Serotype 4, Northeastern Peru, 2008. Emerging Infectious Diseases, 2009, 15, 1815-1818.	2.0	44
97	Proactive Vector Control Strategies and Improved Monitoring and Evaluation Practices for Dengue Prevention. Journal of Medical Entomology, 2009, 46, 1245-1255.	0.9	92
98	The Role of Human Movement in the Transmission of Vector-Borne Pathogens. PLoS Neglected Tropical Diseases, 2009, 3, e481.	1.3	414
99	Usefulness of commercially available GPS data-loggers for tracking human movement and exposure to dengue virus. International Journal of Health Geographics, 2009, 8, 68.	1.2	114
100	Comparison of Two Active Surveillance Programs for the Detection of Clinical Dengue Cases in Iquitos, Peru. American Journal of Tropical Medicine and Hygiene, 2009, 80, 656-660.	0.6	33
101	Comparison of two active surveillance programs for the detection of clinical dengue cases in Iquitos, Peru. American Journal of Tropical Medicine and Hygiene, 2009, 80, 656-60.	0.6	29
102	Defining Challenges and Proposing Solutions for Control of the Virus Vector Aedes aegypti. PLoS Medicine, 2008, 5, e68.	3.9	360
103	Spatial and Temporal Clustering of Dengue Virus Transmission in Thai Villages. PLoS Medicine, 2008, 5, e205.	3.9	221
104	Venezuelan Equine Encephalitis Virus in Iquitos, Peru: Urban Transmission of a Sylvatic Strain. PLoS Neglected Tropical Diseases, 2008, 2, e349.	1.3	52
105	GENETICS: A Breakthrough for Global Public Health. Science, 2007, 316, 1703-1704.	6.0	8
106	Endemic Venezuelan Equine Encephalitis in Northern Peru. Emerging Infectious Diseases, 2004, 10, 880-888.	2.0	65
107	Adult Size and Distribution of <i>Aedes aegypti</i> (Diptera: Culicidae) Associated with Larval Habitats in Iquitos, Peru. Journal of Medical Entomology, 2004, 41, 634-642.	0.9	96
108	Temporal and Geographic Patterns of <i>Aedes aegypti</i> (Diptera: Culicidae) Production in Iquitos, Peru. Journal of Medical Entomology, 2004, 41, 1123-1142.	0.9	189

#	Article	IF	CITATIONS
109	CHARACTERISTICS OF THE SPATIAL PATTERN OF THE DENGUE VECTOR, AEDES AEGYPTI, IN IQUITOS, PERU. American Journal of Tropical Medicine and Hygiene, 2003, 69, 494-505.	0.6	226
110	Characteristics of the spatial pattern of the dengue vector, Aedes aegypti, in Iquitos, Peru. American Journal of Tropical Medicine and Hygiene, 2003, 69, 494-505.	0.6	137
111	Longitudinal Studies of <i>Aedes aegypti</i> (Diptera: Culicidae) in Thailand and Puerto Rico: Population Dynamics. Journal of Medical Entomology, 2000, 37, 77-88.	0.9	226
112	Longitudinal Studies of <i>Aedes aegypti</i> (Diptera: Culicidae) in Thailand and Puerto Rico: Blood Feeding Frequency. Journal of Medical Entomology, 2000, 37, 89-101.	0.9	405
113	Genetic Structure of Local Populations of Lutzomyia longipalpis (Diptera: Psychodidae) in Central Colombia. Journal of Medical Entomology, 1998, 35, 82-89.	0.9	34
114	Larval Microhabitats of Lutzomyia longipalpis (Diptera: Psychodidae) in an Endemic Focus of Visceral Leishmaniasis in Colombia. Journal of Medical Entomology, 1997, 34, 719-728.	0.9	41
115	Seasonal Abundance of Lutzomyia longipalpis (Dipteral Psychodidae) at an Endemic Focus of Visceral Leishmaniasis in Colombia. Journal of Medical Entomology, 1995, 32, 538-548.	0.9	34
116	Species Composition and Relative Abundance of Sand Flies of the Genus Lutzomyia (Diptera:) Tj ETQq0 0 0 rgBT Entomology, 1995, 32, 527-537.	Overlock 0.9	10 Tf 50 467 29
117	Nocturnal Activity Patterns of Lutzomyia longipalpis (Diptera: Psychodidae) at an Endemic Focus of Visceral Leishmaniasis in Colombia. Journal of Medical Entomology, 1995, 32, 605-617.	0.9	63
118	Age Structure, Blood-Feeding Behavior, and Leishmania chagasi Infection in Lutzomyia longipalpis (Diptera: Psychodidae) at an Endemic Focus of Visceral Leishmaniasis in Colombia. Journal of Medical Entomology, 1995, 32, 618-629.	0.9	32
119	Dispersal of the Sand Fly Lutzomyia longipalpis (Diptera: Psychodidae) at an Endemic Focus of Visceral Leishmaniasis in Colombia. Journal of Medical Entomology, 1993, 30, 427-435.	0.9	115
120	Host Preferences of the Sand Fly Lutzomyia longipalpis at an Endemic Focus of American Visceral Leishmaniasis in Colombia. American Journal of Tropical Medicine and Hygiene, 1993, 49, 68-75.	0.6	82
121	Isolation and characterization of serum-resistant strains ofPseudomonas aeruginosa derived from serum-sensitive parental strains. Current Microbiology, 1984, 10, 185-189.	1.0	19