Kyounghyun Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5860582/publications.pdf

Version: 2024-02-01

31	3,605	22	32
papers	citations	h-index	g-index
32	32	32	6307
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Gender Disparity in Liver Cancer Due to Sex Differences in MyD88-Dependent IL-6 Production. Science, 2007, 317, 121-124.	12.6	1,665
2	Non-classical genomic estrogen receptor (ER)/specificity protein and ER/activating protein-1 signaling pathways. Journal of Molecular Endocrinology, 2008, 41, 263-275.	2.5	278
3	Inactivation of the Orphan Nuclear Receptor TR3/Nur77 Inhibits Pancreatic Cancer Cell and Tumor Growth. Cancer Research, 2010, 70, 6824-6836.	0.9	139
4	Nuclear Receptor-Mediated Transactivation Through Interaction with Sp Proteins. Progress in Molecular Biology and Translational Science, 2004, 77, 1-36.	1.9	128
5	3-Methylcholanthrene and Other Aryl Hydrocarbon Receptor Agonists Directly Activate Estrogen Receptor α. Cancer Research, 2006, 66, 2459-2467.	0.9	120
6	Gene Expression Signature Analysis Identifies Vorinostat as a Candidate Therapy for Gastric Cancer. PLoS ONE, 2011, 6, e24662.	2.5	105
7	Domains of Estrogen Receptor α (ERα) Required for ERα/Sp1-Mediated Activation of GC-Rich Promoters by Estrogens and Antiestrogens in Breast Cancer Cells. Molecular Endocrinology, 2003, 17, 804-817.	3.7	103
8	FOXM1 mediates Dox resistance in breast cancer by enhancing DNA repair. Carcinogenesis, 2012, 33, 1843-1853.	2.8	103
9	Mechanism of Action of Phenethylisothiocyanate and Other Reactive Oxygen Species-Inducing Anticancer Agents. Molecular and Cellular Biology, 2014, 34, 2382-2395.	2.3	100
10	MicroRNA-27a Indirectly Regulates Estrogen Receptor $\hat{l}\pm$ Expression and Hormone Responsiveness in MCF-7 Breast Cancer Cells. Endocrinology, 2010, 151, 2462-2473.	2.8	88
11	Aryl Hydrocarbon Receptor Agonists Induce MicroRNA-335 Expression and Inhibit Lung Metastasis of Estrogen Receptor Negative Breast Cancer Cells. Molecular Cancer Therapeutics, 2012, 11, 108-118.	4.1	85
12	Specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 are non-oncogene addiction genes in cancer cells. Oncotarget, 2016, 7, 22245-22256.	1.8	85
13	Betulinic Acid Targets YY1 and ErbB2 through Cannabinoid Receptor-Dependent Disruption of MicroRNA-27a:ZBTB10 in Breast Cancer. Molecular Cancer Therapeutics, 2012, 11, 1421-1431.	4.1	79
14	Activation of nuclear TR3 (NR4A1) by a diindolylmethane analog induces apoptosis and proapoptotic genes in pancreatic cancer cells and tumors. Carcinogenesis, 2011, 32, 836-842.	2.8	70
15	Analysis of Estrogen Receptor α-Sp1 Interactions in Breast Cancer Cells by Fluorescence Resonance Energy Transfer. Molecular Endocrinology, 2005, 19, 843-854.	3.7	58
16	Molecular Mechanism of Inhibitory Aryl Hydrocarbon Receptor—Estrogen Receptor/Sp1 Cross Talk in Breast Cancer Cells. Molecular Endocrinology, 2006, 20, 2199-2214.	3.7	57
17	Induction of the Transcriptional Repressor ZBTB4 in Prostate Cancer Cells by Drug-Induced Targeting of MicroRNA-17-92/106b-25 Clusters. Molecular Cancer Therapeutics, 2012, 11, 1852-1862.	4.1	50
18	Reconstruction of nuclear receptor network reveals that <i>NR2E3</i> is a novel upstream regulator of <i>ESR1</i> in breast cancer. EMBO Molecular Medicine, 2012, 4, 52-67.	6.9	42

#	Article	IF	Citations
19	The Transcriptional Repressor ZBTB4 Regulates EZH2 Through a MicroRNA-ZBTB4-Specificity Protein Signaling Axis. Neoplasia, 2014, 16, 1059-1069.	5.3	36
20	Inhibition of rhabdomyosarcoma cell and tumor growth by targeting specificity protein (Sp) transcription factors. International Journal of Cancer, 2013, 132, 795-806.	5.1	35
21	MicroRNA-26b Represses Colon Cancer Cell Proliferation by Inhibiting Lymphoid Enhancer Factor 1 Expression. Molecular Cancer Therapeutics, 2014, 13, 1942-1951.	4.1	33
22	Specificity protein (Sp) transcription factors and metformin regulate expression of the long non-coding RNA HULC. Oncotarget, 2015, 6, 26359-26372.	1.8	27
23	Mdm2 Regulates Estrogen Receptor and Estrogen-responsiveness in Breast Cancer Cells. Journal of Molecular Endocrinology, 2010, 46, 67-79.	2.5	20
24	DRIP150 Coactivation of Estrogen Receptor $\hat{l}\pm$ in ZR-75 Breast Cancer Cells Is Independent of LXXLL Motifs. Journal of Biological Chemistry, 2005, 280, 8819-8830.	3.4	19
25	Loss of NR2E3 represses AHR by LSD1 reprogramming, is associated with poor prognosis in liver cancer. Scientific Reports, 2017, 7, 10662.	3.3	17
26	NR2E3 is a key component in p53 activation by regulating a long noncoding RNA DINO in acute liver injuries. FASEB Journal, 2019, 33, 8335-8348.	0.5	14
27	Regulation of a long noncoding RNA MALAT1 by aryl hydrocarbon receptor in pancreatic cancer cells and tissues. Biochemical and Biophysical Research Communications, 2020, 532, 563-569.	2.1	14
28	In Vivo Profiling of Estrogen Receptor/Specificity Protein-Dependent Transactivation. Endocrinology, 2008, 149, 5696-5705.	2.8	13
29	Deregulation of NR2E3, an orphan nuclear receptor, by benzo(a)pyrene-induced oxidative stress is associated with histone modification status change of the estrogen receptor gene promoter. Toxicology Letters, 2015, 237, 228-236.	0.8	13
30	Herbal Medicines for Inflammatory Diseases. Mediators of Inflammation, 2014, 2014, 1-1.	3.0	5
31	The androgen receptor inhibits transcription of GPER1 by preventing Sp1 and Sp3 from binding to the promoters in prostate cancer cells. Oncotarget, 2022, 13, 46-60.	1.8	3