
Yang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5860523/publications.pdf Version: 2024-02-01

VANCLU

#	Article	IF	CITATIONS
1	Amorphous three-dimensional porous Co3O4 nanowire network toward superior OER catalysis by lithium-induced. Journal of Alloys and Compounds, 2022, 893, 162287.	2.8	26
2	Carbon dots enhance the interface electron transfer and photoelectrochemical kinetics in TiO2 photoanode. Applied Catalysis B: Environmental, 2022, 304, 120983.	10.8	55
3	Doubling Micropore of Carbon Skeleton via Regulating Molecular Structure of Carbohydrate for Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2022, 169, 046510.	1.3	0
4	Asymmetric Cu-N sites on copper oxide photocathode for photoelectrochemical CO2 reduction towards C2 products. Applied Catalysis B: Environmental, 2022, 316, 121616.	10.8	17
5	Ultrafine Fe2C nanocrystals encapsulated in interconnected hollow carbon spheres as ORR electrocatalysts for Alkaline/Neutral ZnÂâ^'ÂAir batteries. Applied Surface Science, 2022, 601, 154221.	3.1	11
6	3D spiral-like polyhedron nanocarbon confining uniformly dispersed Co nanoparticles for bifunctional electrocatalyst in metal-air battery. Journal of Power Sources, 2021, 482, 228897.	4.0	15
7	Construction of BiVO4 nanosheets@WO3 arrays heterojunction photoanodes by versatile phase transformation strategy. Transactions of Nonferrous Metals Society of China, 2021, 31, 533-544.	1.7	18
8	Defect-Induced Ce-Doped Bi ₂ WO ₆ for Efficient Electrocatalytic N ₂ Reduction. ACS Applied Materials & Interfaces, 2021, 13, 19864-19872.	4.0	59
9	Boosting the Photoelectrochemical Performance of BiVO ₄ Photoanodes by Modulating Bulk and Interfacial Charge Transfer. ACS Applied Electronic Materials, 2021, 3, 1896-1903.	2.0	17
10	Lithium-induced amorphization of Ni–Fe layered-double-hydroxide for highly efficient oxygen evolution. Electrochimica Acta, 2021, 389, 138523.	2.6	9
11	Creation of oxygen vacancies to activate 2D BiVO4 photoanode by photoassisted selfâ€reduction for enhanced solarâ€driven water splitting. Electrochimica Acta, 2021, 399, 139428.	2.6	9
12	Surfactant-assisted controlled synthesis of a metal-organic framework on Fe2O3 nanorod for boosted photoelectrochemical water oxidation. Chemical Engineering Journal, 2020, 379, 122256.	6.6	64
13	Trimetallic oxyhydroxide modified 3D coral-like BiVO4 photoanode for efficient solar water splitting. Chemical Engineering Journal, 2020, 384, 123323.	6.6	30
14	Modulating Charge Transfer Efficiency of Hematite Photoanode with Hybrid Dualâ€Metal–Organic Frameworks for Boosting Photoelectrochemical Water Oxidation. Advanced Science, 2020, 7, 2002563.	5.6	56
15	Effects of alkali ion on boosting WO3 photoelectrochemical performance by electrochemical doping. International Journal of Hydrogen Energy, 2020, 45, 19257-19266.	3.8	17
16	Cobalt Metal–Cobalt Carbide Composite Microspheres for Water Reduction Electrocatalysis. ACS Applied Energy Materials, 2020, 3, 3909-3918.	2.5	32
17	Lithium Fluoride Coated Silicon Nanocolumns as Anodes for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 18465-18472.	4.0	41
18	High porosity Mo doped BiVO4 film by vanadium re-substitution for efficient photoelectrochemical water splitting. Chemical Engineering Journal, 2020, 389, 124365.	6.6	58

Yang Liu

#	Article	IF	CITATIONS
19	Nanoporous BiVO ₄ nanoflake array photoanode for efficient photoelectrochemical water splitting. CrystEngComm, 2020, 22, 1914-1921.	1.3	12
20	Boosting Photoelectrochemical Performance of BiVO ₄ through Photoassisted Self-Reduction. ACS Applied Energy Materials, 2020, 3, 4403-4410.	2.5	28
21	Electrodeposition of MoS _{<i>x</i>} Hydrogen Evolution Catalysts from Sulfur-Rich Precursors. ACS Applied Materials & Interfaces, 2019, 11, 32879-32886.	4.0	45
22	Cobalt nanoparticles embedded in nitrogen-doped carbon nanotubes for efficient catalysis of oxygen reduction reaction. Journal of the Iranian Chemical Society, 2019, 16, 2575-2585.	1.2	6
23	Cu ₄ SnS ₄ -Rich Nanomaterials for Thin-Film Lithium Batteries with Enhanced Conversion Reaction. ACS Nano, 2019, 13, 10671-10681.	7.3	26
24	Oxygen-Deficient Nanofiber WO _{3–<i>x</i>} /WO ₃ Homojunction Photoanodes Synthesized via a Novel Metal Self-Reducing Method. ACS Applied Materials & Interfaces, 2019, 11, 39951-39960.	4.0	32
25	In Situ Formation of WO ₃ -Based Heterojunction Photoanodes with Abundant Oxygen Vacancies via a Novel Microbattery Method. ACS Applied Materials & Interfaces, 2019, 11, 15467-15477.	4.0	39
26	Infrared Light-Driven LaW(O,N) ₃ OER Photoelectrocatalysts from Chloride Flux-Grown La ₄ W ₃ O ₁₅ Templating Precursors. ACS Applied Energy Materials, 2019, 2, 913-922.	2.5	6
27	Facet effect on the photoelectrochemical performance of a WO3/BiVO4 heterojunction photoanode. Applied Catalysis B: Environmental, 2019, 245, 227-239.	10.8	141
28	An efficient tandem photoelectrochemical cell composed of FeOOH/TiO2/BiVO4 and Cu2O for self-driven solar water splitting. International Journal of Hydrogen Energy, 2019, 44, 594-604.	3.8	41
29	Enhanced Activity Promoted by CeO _{<i>x</i>} on a CoO _{<i>x</i>} Electrocatalyst for the Oxygen Evolution Reaction. ACS Catalysis, 2018, 8, 4257-4265.	5.5	151
30	Films of WO3 plate-like arrays with oxygen vacancies proportionally controlled via rapid chemical reduction. International Journal of Hydrogen Energy, 2018, 43, 208-218.	3.8	34
31	Tunable electronic coupling of cobalt sulfide/carbon composites for optimizing oxygen evolution reaction activity. Journal of Materials Chemistry A, 2018, 6, 10304-10312.	5.2	86
32	Interface Engineering and its Effect on WO ₃ -Based Photoanode and Tandem Cell. ACS Applied Materials & Interfaces, 2018, 10, 12639-12650.	4.0	54
33	The role of water in reducing WO3 film by hydrogen: Controlling the concentration of oxygen vacancies and improving the photoelectrochemical performance. Journal of Colloid and Interface Science, 2018, 512, 86-95.	5.0	28
34	Sulfur-Rich MoS ₆ as an Electrocatalyst for the Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 4453-4458.	2.5	38
35	Chloride Flux Growth of Idiomorphic <i>A</i> WO ₄ (<i>A</i> = Sr, Ba) Single Microcrystals. Crystal Growth and Design, 2018, 18, 5301-5310.	1.4	8
36	Controlling Surface Oxides in Si/C Nanocomposite Anodes for Highâ€Performance Liâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1801718.	10.2	190

Yang Liu

#	Article	IF	CITATIONS
37	S-C ₃ N ₄ Quantum Dot Decorated ZnO Nanorods to Improve Their Photoelectrochemical Performance. Nano, 2017, 12, 1750064.	0.5	13
38	Self-Assembled Cu–Sn–S Nanotubes with High (De)Lithiation Performance. ACS Nano, 2017, 11, 10347-10356.	7.3	35
39	Highly Efficient Photoelectrochemical Water Splitting from Hierarchical WO ₃ /BiVO ₄ Nanoporous Sphere Arrays. Nano Letters, 2017, 17, 8012-8017.	4.5	164
40	Hydrothermal Sm-doped tungsten oxide vertically plate-like array photoelectrode and its enhanced photoelectrocatalytic efficiency for degradation of organic dyes. Journal of Materials Science: Materials in Electronics, 2017, 28, 4004-4013.	1.1	10
41	Enhanced photoelectrochemical performance of plate-like WO 3 induced by surface oxygen vacancies. Electrochemistry Communications, 2016, 68, 81-85.	2.3	43
42	Electrochemical Doping Induced In Situ Homo-species for Enhanced Photoelectrochemical Performance on WO3 Nanoparticles Film Photoelectrodes. Electrochimica Acta, 2016, 210, 251-260.	2.6	28
43	Effect of Surface Passivation on Photoelectrochemical Water Splitting Performance of WO3 Vertical Plate-Like Films. Catalysts, 2015, 5, 2024-2038.	1.6	25
44	ZnO nanoparticle-functionalized WO ₃ plates with enhanced photoelectrochemical properties. RSC Advances, 2015, 5, 46928-46934.	1.7	31
45	Enhancement of the Photoelectrochemical Performance of WO ₃ Vertical Arrays Film for Solar Water Splitting by Gadolinium Doping. Journal of Physical Chemistry C, 2015, 119, 14834-14842.	1.5	156
46	Preparation and enhanced photoelectrochemical performance of a p–n heterojunction CuFe ₂ O ₄ /WO ₃ nanocomposite film. RSC Advances, 2015, 5, 99378-99384.	1.7	28
47	Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science, 2015, 347, 970-974.	6.0	3,803
48	Enhanced photoelectrochemical performance ofÂWO3 film with HfO2 passivation layer. International Journal of Hydrogen Energy, 2015, 40, 8856-8863.	3.8	36
49	Spinel LiMn 2 O 4 nanoparticles dispersed on nitrogen-doped reduced graphene oxide nanosheets as an efficient electrocatalyst for aluminium-air battery. International Journal of Hydrogen Energy, 2015, 40, 9225-9234.	3.8	51
50	Enhancing photoelectrochemical performance with a bilayer-structured film consisting of graphene–WO ₃ nanocrystals and WO ₃ vertically plate-like arrays as photoanodes. RSC Advances, 2014, 4, 3219-3225.	1.7	26
51	Transformation of a Cobalt Carbide (Co ₃ C) Oxygen Evolution Precatalyst. ACS Applied Energy Materials, 0, , .	2.5	20