
Norbert Leitinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/586020/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of a short-term low calorie diet alone or with interval exercise on quality of life and oxidized phospholipids in obese females. Physiology and Behavior, 2022, 246, 113706.	2.1	2
2	BAFF 60â€mer binding to BAFF receptor 3 utilizes the NFâ€̂₽B1 signaling pathway to hyperactivate B cells. FASEB Journal, 2022, 36, .	0.5	0
3	A Critical Role for Pannexin 1 in Heart Failure Induced by Acute and Chronic Isoproterenol Administration. FASEB Journal, 2022, 36, .	0.5	0
4	Targeting oxidized phospholipids by AAV-based gene therapy in mice with established hepatic steatosis prevents progression to fibrosis. Science Advances, 2022, 8, .	10.3	11
5	Adaptive thermogenesis in brown adipose tissue involves activation of pannexin-1 channels. Molecular Metabolism, 2021, 44, 101130.	6.5	18
6	Iron control of erythroid microtubule cytoskeleton as a potential target in treatment of iron-restricted anemia. Nature Communications, 2021, 12, 1645.	12.8	9
7	Endothelial Pannexin 1 Regulates Cardiac Response to Myocardial Infarction. Circulation Research, 2021, 128, 1211-1213.	4.5	14
8	B Cell–Activating Factor Antagonism Attenuates the Growth of Experimental Abdominal Aortic Aneurysm. American Journal of Pathology, 2021, 191, 2231-2244.	3.8	8
9	Extracellular nucleotide signaling in solid organ transplantation. American Journal of Transplantation, 2020, 20, 633-640.	4.7	6
10	Loss of Endothelial FTO Antagonizes Obesity-Induced Metabolic and Vascular Dysfunction. Circulation Research, 2020, 126, 232-242.	4.5	46
11	Mitochondrial Ca2+ Signaling Is an Electrometabolic Switch to Fuel Phagosome Killing. Cell Reports, 2020, 33, 108411.	6.4	16
12	Repurposing anti-inflammasome NRTIs for improving insulin sensitivity and reducing type 2 diabetes development. Nature Communications, 2020, 11, 4737.	12.8	31
13	Innate immune signaling in Drosophila shifts anabolic lipid metabolism from triglyceride storage to phospholipid synthesis to support immune function. PLoS Genetics, 2020, 16, e1009192.	3.5	43
14	Distinct insulin granule subpopulations implicated in the secretory pathology of diabetes types 1 and 2. ELife, 2020, 9, .	6.0	26
15	Novel Role of IL (Interleukin)-1β in Neutrophil Extracellular Trap Formation and Abdominal Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 843-853.	2.4	173
16	Chanzyme TRPM7 Mediates the Ca2+ Influx Essential for Lipopolysaccharide-Induced Toll-Like Receptor 4 Endocytosis and Macrophage Activation. Immunity, 2018, 48, 59-74.e5.	14.3	179
17	Myeloid P2Y2 receptor promotes acute inflammation but is dispensable for chronic high-fat diet-induced metabolic dysfunction. Purinergic Signalling, 2018, 14, 19-26.	2.2	11
18	Pannexin 1 Channels as an Unexpected New Target of the Anti-Hypertensive Drug Spironolactone. Circulation Research, 2018, 122, 606-615.	4.5	76

NORBERT LEITINGER

#	Article	IF	CITATIONS
19	cGAS drives noncanonical-inflammasome activation in age-related macular degeneration. Nature Medicine, 2018, 24, 50-61.	30.7	205
20	Macrophages sensing oxidized DAMPs reprogram their metabolism to support redox homeostasis and inflammation through a TLR2-Syk-ceramide dependent mechanism. Molecular Metabolism, 2018, 7, 23-34.	6.5	46
21	Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release. Nature, 2018, 563, 714-718.	27.8	220
22	Macrophage phenotype and bioenergetics are controlled by oxidized phospholipids identified in lean and obese adipose tissue. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6254-E6263.	7.1	102
23	The effect of oxidized phospholipids on phenotypic polarization and function of macrophages. Free Radical Biology and Medicine, 2017, 111, 156-168.	2.9	48
24	Nuclear Factor (Erythroid-Derived 2)-Like 2 and Thioredoxin-1 in Atherosclerosis and Ischemia/Reperfusion Injury in the Heart. Antioxidants and Redox Signaling, 2017, 26, 630-644.	5.4	59
25	Combined CDK4/6 and mTOR Inhibition Is Synergistic against Glioblastoma via Multiple Mechanisms. Clinical Cancer Research, 2017, 23, 6958-6968.	7.0	74
26	Macrophage metabolism in atherosclerosis. FEBS Letters, 2017, 591, 3042-3060.	2.8	103
27	The Anti-Apoptotic Properties of APEX1 in the Endothelium Require the First 20 Amino Acids and Converge on Thioredoxin-1. Antioxidants and Redox Signaling, 2017, 26, 616-629.	5.4	8
28	Cinnamic Acid Derivatives Enhance the Efficacy of Transarterial Embolization in a Rat Model of Hepatocellular Carcinoma. CardioVascular and Interventional Radiology, 2017, 40, 430-437.	2.0	19
29	B-Cell Depletion Promotes Aortic Infiltration of Immunosuppressive Cells and Is Protective of Experimental Aortic Aneurysm. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 2191-2202.	2.4	54
30	NKp46+ natural killer cells attenuate metabolismâ€induced hepatic fibrosis by regulating macrophage activation in mice. Hepatology, 2016, 63, 799-812.	7.3	107
31	Pannexin 1 is required for full activation of insulin-stimulated glucose uptake in adipocytes. Molecular Metabolism, 2015, 4, 610-618.	6.5	54
32	Pannexin 1 channels regulate leukocyte emigration through the venous endothelium during acute inflammation. Nature Communications, 2015, 6, 7965.	12.8	159
33	Dietary effects on liver tumor burden in mice treated with the hepatocellular carcinogen diethylnitrosamine. Journal of Hepatology, 2015, 62, 599-606.	3.7	60
34	Purinergic and Calcium Signaling in Macrophage Function and Plasticity. Frontiers in Immunology, 2014, 5, 580.	4.8	76
35	The role of pannexin1 in the induction and resolution of inflammation. FEBS Letters, 2014, 588, 1416-1422.	2.8	84
36	Phenotypic Polarization of Macrophages in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1120-1126.	2.4	221

#	Article	IF	CITATIONS
37	S-Nitrosylation Inhibits Pannexin 1 Channel Function. Journal of Biological Chemistry, 2012, 287, 39602-39612.	3.4	89
38	The Role of Phospholipid Oxidation Products in Inflammatory and Autoimmune Diseases. Sub-Cellular Biochemistry, 2008, 49, 325-350.	2.4	71
39	POVPC induces the smooth muscle cells inflammatory phenotype. FASEB Journal, 2007, 21, A517.	0.5	Ο
40	Oxidized phospholipids as triggers of inflammation in atherosclerosis. Molecular Nutrition and Food Research, 2005, 49, 1063-1071.	3.3	68