List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5859858/publications.pdf Version: 2024-02-01

		318942	312153
106	2,195	23	41
papers	citations	h-index	g-index
112	112	112	2489
all docs	docs citations	times ranked	citing authors

ACO A RINKEN

#	Article	IF	CITATIONS
1	Revisiting the Resazurin-Based Sensing of Cellular Viability: Widening the Application Horizon. Biosensors, 2022, 12, 196.	2.3	26
2	Structure-Based Design of High-Affinity Fluorescent Probes for the Neuropeptide Y Y ₁ Receptor. Journal of Medicinal Chemistry, 2022, 65, 4832-4853.	2.9	10
3	Intracellular dynamics of the Sigma-1 receptor observed with super-resolution imaging microscopy. PLoS ONE, 2022, 17, e0268563.	1.1	4
4	Live-cell microscopy or fluorescence anisotropy with budded baculoviruses—which way to go with measuring ligand binding to M ₄ muscarinic receptors?. Open Biology, 2022, 12, .	1.5	6
5	ArtSeg—Artifact segmentation and removal in brightfield cell microscopy images without manual pixel-level annotations. Scientific Reports, 2022, 12, .	1.6	4
6	Quantitative analysis of fluorescent ligand binding to dopamine D 3 receptors using liveâ€cell microscopy. FEBS Journal, 2021, 288, 1514-1532.	2.2	11
7	BRET- and fluorescence anisotropy-based assays for real-time monitoring of ligand binding to M2 muscarinic acetylcholine receptors. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118930.	1.9	8
8	Fluorescence Anisotropy-Based Assay for Characterization of Ligand Binding Dynamics to GPCRs: The Case of Cy3B-Labeled Ligands Binding to MC4 Receptors in Budded Baculoviruses. Methods in Molecular Biology, 2021, 2268, 119-136.	0.4	7
9	Progesterone triggers Rho kinase-cofilin axis during <i>in vitro</i> and <i>in vivo</i> endometrial decidualization. Human Reproduction, 2021, 36, 2230-2248.	0.4	6
10	Decidualized endometrial stromal cells present with altered androgen response in PCOS. Scientific Reports, 2021, 11, 16287.	1.6	10
11	Budded baculoviruses as a receptor display system to quantify ligand binding with TIRF microscopy. Nanoscale, 2021, 13, 2436-2447.	2.8	12
12	cAMP Biosensor Assay Using BacMam Expression System: Studying the Downstream Signaling of LH/hCG Receptor Activation. Methods in Molecular Biology, 2021, 2268, 179-192.	0.4	1
13	PL1 Peptide Engages Acidic Surfaces on Tumor-Associated Fibronectin and Tenascin Isoforms to Trigger Cellular Uptake. Pharmaceutics, 2021, 13, 1998.	2.0	5
14	The constitutive activity of melanocortinâ€4 receptors in cAMP pathway is allosterically modulated by zinc and copper ions. Journal of Neurochemistry, 2020, 153, 346-361.	2.1	15
15	Zeta Potential of Extracellular Vesicles: Toward Understanding the Attributes that Determine Colloidal Stability. ACS Omega, 2020, 5, 16701-16710.	1.6	187
16	Characterizing the bio-functionalization of gold surface with total internal reflection fluorescence (TIRF) microscopy. Proceedings of the Estonian Academy of Sciences, 2020, 69, 27.	0.9	1
17	Immunoassay for rapid on-site detection of glyphosate herbicide. Environmental Monitoring and Assessment, 2019, 191, 507.	1.3	16
18	Chemosensitivity and chemoresistance in endometriosis – differences for ectopic versus eutopic cells. Reproductive BioMedicine Online, 2019, 39, 556-568.	1.1	7

#	Article	IF	CITATIONS
19	Hyperglycosylated hCG activates LH/hCG-receptor with lower activity than hCG. Molecular and Cellular Endocrinology, 2019, 479, 103-109.	1.6	13
20	Immunosensing system for rapid multiplex detection of mastitis-causing pathogens in milk. Talanta, 2018, 178, 949-954.	2.9	27
21	Assays with Detection of Fluorescence Anisotropy: Challenges and Possibilities for Characterizing Ligand Binding to GPCRs. Trends in Pharmacological Sciences, 2018, 39, 187-199.	4.0	34
22	Implementation of fluorescence anisotropy-based assay for the characterization of ligand binding to dopamine D1 receptors. European Journal of Pharmacology, 2018, 839, 40-46.	1.7	14
23	Characterization of ligand binding to melanocortin 4 receptors using fluorescent peptides with improved kinetic properties. European Journal of Pharmacology, 2017, 799, 58-66.	1.7	14
24	Determination of biological activity of gonadotropins hCG and FSH by Förster resonance energy transfer based biosensors. Scientific Reports, 2017, 7, 42219.	1.6	7
25	Budded baculovirus particles as a source of membrane proteins for radioligand binding assay: The case of dopamine D 1 receptor. Journal of Pharmacological and Toxicological Methods, 2017, 86, 81-86.	0.3	6
26	Precision Targeting of Tumor Macrophages with a CD206 Binding Peptide. Scientific Reports, 2017, 7, 14655.	1.6	125
27	Image-based cell-size estimation for baculovirus quantification. BioTechniques, 2017, 63, 161-168.	0.8	17
28	Wfs1 is expressed in dopaminoceptive regions of the amniote brain and modulates levels of D1-like receptors. PLoS ONE, 2017, 12, e0172825.	1.1	4
29	Antibacterial activity of the nitrovinylfuran G1 (Furvina) and its conversion products. Scientific Reports, 2016, 6, 36844.	1.6	9
30	Dynamics of ligand binding to GPCR: Residence time of melanocortins and its modulation. Pharmacological Research, 2016, 113, 747-753.	3.1	8
31	Application of fluorescence methods for characterization of ligand binding to G protein coupled receptors. SpringerPlus, 2015, 4, L19.	1.2	0
32	Characterization of ligand binding to dopamine receptors with fluorescence anisotropy based assay. SpringerPlus, 2015, 4, .	1.2	0
33	Novel peptides for kinetic studies of ligand binding to melanocortin-4 receptors using fluorescence anisotropy. SpringerPlus, 2015, 4, .	1.2	0
34	Allosteric modulation of peptide ligand binding to Neuropeptide Y receptor Y1 revealed by fluorescence-based assay. SpringerPlus, 2015, 4, .	1.2	1
35	Homogeneous Fluorescence Anisotropy-Based Assay for Characterization of Ligand Binding Dynamics to GPCRs in Budded Baculoviruses: The Case of Cy3B-NDP-α-MSH Binding to MC4 Receptors. Methods in Molecular Biology, 2015, 1272, 37-50.	0.4	15
36	cAMP Assay for GPCR Ligand Characterization: Application of BacMam Expression System. Methods in Molecular Biology, 2015, 1272, 65-77.	0.4	11

#	Article	IF	CITATIONS
37	A Perspective on Studying G-Protein–Coupled Receptor Signaling with Resonance Energy Transfer Biosensors in Living Organisms. Molecular Pharmacology, 2015, 88, 589-595.	1.0	28
38	Characterization of the Biological Activities of Human Luteinizing Hormone and Chorionic Gonadotropin by a Förster Resonance Energy Transfer-Based Biosensor Assay. Analytical Letters, 2015, 48, 2799-2809.	1.0	8
39	Ligand Residence Time at G-protein–Coupled Receptors—Why We Should Take Our Time To Study It. Molecular Pharmacology, 2015, 88, 552-560.	1.0	66
40	Characterization of 5-HT1A receptors and their complexes with G-proteins in budded baculovirus particles using fluorescence anisotropy of Bodipy-FL-NAN-190. Neurochemistry International, 2014, 67, 32-38.	1.9	20
41	Budded baculoviruses as a tool for a homogeneous fluorescence anisotropy-based assay of ligand binding to C protein-coupled receptors: The case of melanocortin 4 receptors. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 372-381.	1.4	35
42	Lunasin-induced behavioural effects in mice: Focus on the dopaminergic system. Behavioural Brain Research, 2013, 256, 5-9.	1.2	7
43	Application of Baculovirus Technology for Studies of G Protein-Coupled Receptor Signaling. Springer Proceedings in Physics, 2013, , 339-348.	0.1	1
44	Biarsenical ligands bind to endogenous G-protein α-subunits and enable allosteric sensing of nucleotide binding. BMC Biochemistry, 2013, 14, 37.	4.4	4
45	1-substituted apomorphines as potent dopamine agonists. Bioorganic and Medicinal Chemistry, 2013, 21, 4143-4150.	1.4	4
46	BacMam System for FRET-Based cAMP Sensor Expression in Studies of Melanocortin MC1 Receptor Activation. Journal of Biomolecular Screening, 2012, 17, 1096-1101.	2.6	19
47	Characterization of heterotrimeric nucleotide-depleted Gαi-proteins by Bodipy-FL-GTPγS fluorescence anisotropy. Archives of Biochemistry and Biophysics, 2012, 524, 93-98.	1.4	14
48	Chemoenzymatic synthesis and evaluation of 3-azabicyclo[3.2.0]heptane derivatives as dopaminergic ligands. European Journal of Medicinal Chemistry, 2012, 55, 255-261.	2.6	26
49	Activating Effects of Chronic Variable Stress in Rats with Different Exploratory Activity: Association with Dopamine D1 Receptor Function in Nucleus Accumbens. Neuropsychobiology, 2011, 64, 110-122.	0.9	11
50	Millimolar Mn2+ influences agonist binding to 5-HT1A receptors by inhibiting guanosine nucleotide binding to receptor-coupled G-proteins. NeuroToxicology, 2011, 32, 25-30.	1.4	5
51	New 2-thioether-substituted apomorphines as potent and selective dopamine D2 receptor agonists. European Journal of Medicinal Chemistry, 2011, 46, 2992-2999.	2.6	5
52	Fluorescence anisotropy assay for pharmacological characterization of ligand binding dynamics to melanocortin 4 receptors. Analytical Biochemistry, 2010, 402, 32-39.	1.1	147
53	N-Substituted-2-alkyl- and 2-arylnorapomorphines: Novel, highly active D2 agonists. Bioorganic and Medicinal Chemistry, 2009, 17, 4756-4762.	1.4	12
54	Co-administration of the partial dopamine D2 agonist terguride with L-dopa attenuates L-dopa-induced locomotor sensitization in hemiparkinsonian mice. Behavioural Brain Research, 2009, 202, 232-237.	1.2	9

#	Article	IF	CITATIONS
55	Enhancement of agonist binding to 5-HT1A receptors in rat brain membranes by millimolar Mn2+. Neuroscience Letters, 2009, 457, 32-35.	1.0	5
56	α2A-Adrenoceptor-specific Stimulation of [35S]GTPγS Binding to Membrane Preparations of Rat Frontal Cortex. Neurochemical Research, 2008, 33, 477-482.	1.6	3
57	Synthesis and neuropharmacological characterization of 2-O-substituted apomorphines. Bioorganic and Medicinal Chemistry, 2008, 16, 4563-4568.	1.4	15
58	Regulation of extracellular serotonin levels and brain-derived neurotrophic factor in rats with high and low exploratory activity. Brain Research, 2008, 1194, 110-117.	1.1	28
59	Rats with high or low sociability are differently affected by chronic variable stress. Neuroscience, 2008, 152, 867-876.	1.1	27
60	Modulation of Adenylyl Cyclase Activity in Rat Striatal Homogenate by Dopaminergic Receptors. Journal of Pharmacological Sciences, 2008, 108, 63-70.	1.1	8
61	Repeated administration of the dopaminergic agonist apomorphine: development of apomorphine aggressiveness and changes in the interaction between dopamine D(2) receptors and G-proteins. Pharmacological Reports, 2008, 60, 827-33.	1.5	4
62	Tickling-induced 50-kHz ultrasonic vocalization is individually stable and predicts behaviour in tests of anxiety and depression in rats. Behavioural Brain Research, 2007, 184, 57-71.	1.2	80
63	Production of Biosensors with Exchangeable Enzymeâ^'Containing Threads. Analytical Chemistry, 2007, 79, 6042-6044.	3.2	5
64	Amphetamine-induced locomotion, behavioral sensitization to amphetamine, and striatal D2 receptor function in rats with high or low spontaneous exploratory activity: Differences in the role of locus coeruleus. Brain Research, 2007, 1131, 138-148.	1.1	44
65	Kinetic evidence for tandemly arranged ligand binding sites in melanocortin 4 receptor complexes. Neurochemistry International, 2006, 49, 533-542.	1.9	143
66	Individual differences in sucrose intake and preference in the rat: Circadian variation and association with dopamine D2 receptor function in striatum and nucleus accumbens. Neuroscience Letters, 2006, 403, 119-124.	1.0	62
67	Modulation of dopamine D1 receptor signaling by adenosine A1 receptors in Sf9 cells requires expression of Gi proteins. Neuroscience Letters, 2006, 406, 169-173.	1.0	17
68	Characteristics of Binding of [3H]WAY100635 to Rat Hippocampal Membranes. Neurochemical Research, 2006, 31, 1135-1140.	1.6	10
69	Sol–gel films for DNA microarray applications. Materials Letters, 2006, 60, 1833-1838.	1.3	17
70	Co-operative regulation of ligand binding to melanocortin receptor subtypes: Evidence for interacting binding sites. European Journal of Pharmacology, 2005, 512, 85-95.	1.7	31
71	Aminopropyl Embedded Silica Films as Potent Substrates in DNA Microarray Applications. Materials Research Society Symposia Proceedings, 2005, 873, 1.	0.1	1
72	Kinetic and functional properties of [3H]ZM241385, a high affinity antagonist for adenosine A2A receptors. Life Sciences, 2005, 76, 1513-1526.	2.0	35

#	Article	IF	CITATIONS
73	N-alkylated dipeptide amides and related structures as imitations of the melanocortins' active core. Peptides, 2005, 26, 1997-2016.	1.2	5
74	Effects of low dose N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine administration on exploratory and amphetamine-induced behavior and dopamine D2 receptor function in rats with high or low exploratory activity. Neuroscience, 2005, 132, 979-990.	1.1	30
75	New Substituted Piperazines as Ligands for Melanocortin Receptors. Correlation to the X-ray Structure of "THIQ― Journal of Medicinal Chemistry, 2004, 47, 4613-4626.	2.9	32
76	Increased behavioural activity of rats in forced swimming test after partial denervation of serotonergic system by parachloroamphetamine treatment. Neurochemistry International, 2004, 45, 721-732.	1.9	16
77	Characterization of M2 muscarinic receptor activation of different G protein subtypes. Neurochemistry International, 2004, 44, 119-124.	1.9	17
78	Effect of denervation of the locus coeruleus projections by DSP-4 treatment on [3H]-raclopride binding to dopamine D2 receptors and D2 receptor–G protein interaction in the rat striatum. Brain Research, 2003, 976, 209-216.	1.1	32
79	A non-peptide radioiodinated high affinity melanocortin-4 receptor ligand. Journal of Labelled Compounds and Radiopharmaceuticals, 2003, 46, 1007-1017.	0.5	8
80	Preparation of smooth siloxane surfaces for AFM visualization of immobilized biomolecules. Surface Science, 2003, 532-535, 1085-1091.	0.8	20
81	Effect of loss of the locus coeruleus noradrenergic projections by DSP-4 treatment on striatal dopamine D2 receptors. Journal of Neurochemistry, 2003, 85, 18-18.	2.1	2
82	Effects of partial locus coeruleus denervation and chronic mild stress on behaviour and monoamine neurochemistry in the rat. European Neuropsychopharmacology, 2003, 13, 19-28.	0.3	58
83	Reversible and irreversible components of [3H]-N-propylnorapomorphine interaction with rat striatal membranes. Neuroscience Letters, 2002, 325, 111-114.	1.0	1
84	Characterization of glucose oxidase immobilization onto mica carrier by atomic force microscopy and kinetic studies. New Biotechnology, 2002, 19, 195-199.	2.7	21
85	D2 dopamine receptor-G protein coupling. Cross-regulation of agonist and guanosine nucleotide binding sites. Neuroscience Letters, 2001, 302, 5-8.	1.0	11
86	Striatal dopamine denervation decreases the GDP binding affinity in rat striatal membranes. NeuroReport, 2000, 11, 2691-2694.	0.6	9
87	Modulation of [35S]GTPÎ ³ S binding to Chinese hamster ovary cell membranes by D2(short) dopamine receptors. Neuroscience Letters, 2000, 280, 135-138.	1.0	9
88	Lesioning of <i>Locus coeruleus</i> Projections by DSPâ€4 Neurotoxin Treatment: Effect on Amphetamineâ€Induced Hyperlocomotion and Dopamine D ₂ Receptor Binding in Rats. Basic and Clinical Pharmacology and Toxicology, 2000, 86, 197-202.	0.0	2
89	Lesioning of Locus coeruleus Projections by DSP-4 Neurotoxin Treatment: Effect on Amphetamine-Induced Hyperlocomotion and Dopamine D2 Receptor Binding in Rats. Basic and Clinical Pharmacology and Toxicology, 2000, 86, 197-202.	0.0	36
90	Immobilisation and Kinetic Study of Tyrosinase for Biosensor Construction. Analytical Letters, 1999, 32, 235-249.	1.0	17

#	Article	IF	CITATIONS
91	Pharmacological characterization of dopamine-stimulated [35S]-Guanosine 5â€2-(γ-thiotriphosphate) ([35S]GTPγS) binding in rat striatal membranes. Biochemical Pharmacology, 1999, 57, 155-162.	2.0	57
92	Serotonergic agonists behave as partial agonists at the dopamine D2 receptor. NeuroReport, 1999, 10, 493-495.	0.6	19
93	Calibration of glucose biosensors by using pre-steady state kinetic data. Biosensors and Bioelectronics, 1998, 13, 801-807.	5.3	10
94	Pseudo-Noncompetitive Antagonism of M1, M3, and M5Muscarinic Receptor-Mediated Ca2+Mobilization by Muscarinic Antagonists. Biochemical and Biophysical Research Communications, 1998, 243, 41-46.	1.0	14
95	Role of fluidity of membranes on the guanyl nucleotide-dependent binding of cholecystokinin-8S to rat brain cortical membranes. Biochemical Pharmacology, 1998, 55, 423-431.	2.0	17
96	Mechanism of modulation of [3H]raclopride binding to dopaminergic receptors in rat striatal membranes by sodium ions. Neurochemistry International, 1997, 30, 575-581.	1.9	5
97	Modulation of [3H]quinpirole binding to dopaminergic receptors by adenosine A2A receptors. Neuroscience Letters, 1997, 239, 61-64.	1.0	15
98	Regulation of dopamine D2 receptor affinity by cholecystokinin octapeptide in fibroblast cells contransfected with human CCKB and D2L receptor cDNAs. Molecular Brain Research, 1996, 36, 292-299.	2.5	20
99	Kinetic evidence for isomerization of the dopamine receptor-raclopride complex. Neurochemistry International, 1996, 28, 591-595.	1.9	26
100	Formation of the Functional Complexes of m2 Muscarinic Acetylcholine Receptors with GTP-Binding Regulatory Proteins in Solution. Journal of Biochemistry, 1996, 120, 193-200.	0.9	12
101	A Model of Oximeter - Based Enzyme Electrode. Analytical Letters, 1996, 29, 859-877.	1.0	9
102	Solubilization of muscarinic receptor subtypes from baculovirus infected sf9 insect cells. Biochemical Pharmacology, 1994, 48, 1245-1251.	2.0	30
103	Two-step binding of green mamba toxin to muscarinic acetylcholine receptor. FEBS Letters, 1994, 352, 95-97.	1.3	13
104	Solubilization and Characterization of Atrial Muscarinic Acetylcholine Receptors in Sucrose Monolaurate. Archives of Biochemistry and Biophysics, 1993, 301, 158-164.	1.4	12
105	Chapter 7 Muscarinic acetylcholine receptors. New Comprehensive Biochemistry, 1993, 24, 199-220.	0.1	4
106	Fluidity of detergent micelles plays an important role in muscarinic receptor solubilization. Journal of Biosciences, 1990, 15, 149-152.	0.5	3