Ayesha Khan Tareen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5859800/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent developments in emerging two-dimensional materials and their applications. Journal of Materials Chemistry C, 2020, 8, 387-440.	5.5	501
2	Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications. Nanoscale, 2019, 11, 21622-21678.	5.6	201
3	Recent Advances in Oxidation Stable Chemistry of 2D MXenes. Advanced Materials, 2022, 34, e2107554.	21.0	163
4	Nickelâ€Based Transition Metal Nitride Electrocatalysts for the Oxygen Evolution Reaction. ChemSusChem, 2019, 12, 3941-3954.	6.8	150
5	Two-Dimensional Tellurium: Progress, Challenges, and Prospects. Nano-Micro Letters, 2020, 12, 99.	27.0	139
6	Recent advances in doping engineering of black phosphorus. Journal of Materials Chemistry A, 2020, 8, 5421-5441.	10.3	93
7	Going green with batteries and supercapacitor: Two dimensional materials and their nanocomposites based energy storage applications. Progress in Solid State Chemistry, 2020, 58, 100254.	7.2	87
8	Synthesis, properties and novel electrocatalytic applications of the 2D-borophene Xenes. Progress in Solid State Chemistry, 2020, 59, 100283.	7.2	65
9	A comprehensive review on synthesis of pristine and doped inorganic room temperature stable mayenite electride, [Ca24Al28O64]4+(eâ^')4 and its applications as a catalyst. Progress in Solid State Chemistry, 2019, 54, 1-19.	7.2	63
10	Recent Progress, Challenges, and Prospects in Two-Dimensional Photo-Catalyst Materials and Environmental Remediation. Nano-Micro Letters, 2020, 12, 167.	27.0	57
11	Facile synthesis of tin-doped mayenite electride composite as a non-noble metal durable electrocatalyst for oxygen reduction reaction (ORR). Dalton Transactions, 2018, 47, 13498-13506.	3.3	56
12	Mixed ternary transition metal nitrides: A comprehensive review of synthesis, electronic structure, and properties of engineering relevance. Progress in Solid State Chemistry, 2019, 53, 1-26.	7.2	50
13	Novel emerging graphdiyne based two dimensional materials: Synthesis, properties and renewable energy applications. Nano Today, 2021, 39, 101207.	11.9	49
14	Facile synthesis of a cationic-doped [Ca ₂₄ Al ₂₈ O ₆₄] ⁴⁺ (4e ^{â^'}) composite <i>via</i> a rapid citrate sol–gel method. Dalton Transactions, 2018, 47, 3819-3830.	3.3	48
15	Facile metal-free reduction-based synthesis of pristine and cation-doped conductive mayenite. RSC Advances, 2018, 8, 24276-24285.	3.6	43
16	Broadband Nonlinear Photonics in Few‣ayer Borophene. Small, 2021, 17, e2006891.	10.0	42
17	Evolution of low-dimensional material-based field-effect transistors. Nanoscale, 2021, 13, 5162-5186.	5.6	39
18	Fe-doped mayenite electride composite with 2D reduced Graphene Oxide: As a non-platinum based, highly durable electrocatalyst for Oxygen Reduction Reaction. Scientific Reports, 2019, 9, 19809.	3.3	38

Ayesha Khan Tareen

#	Article	IF	CITATIONS
19	Sensing Applications of Atomically Thin Group IV Carbon Siblings Xenes: Progress, Challenges, and Prospects. Advanced Functional Materials, 2021, 31, 2005957.	14.9	37
20	Two-dimensional materials toward Terahertz optoelectronic device applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 51, 100473.	11.6	36
21	Progress towards High-Efficiency and Stable Tin-Based Perovskite Solar Cells. Energies, 2020, 13, 5092.	3.1	35
22	Novel Two-Dimensional Carbon–Chromium Nitride-Based Composite as an Electrocatalyst for Oxygen Reduction Reaction. Frontiers in Chemistry, 2019, 7, 738.	3.6	34
23	Facile Synthesis of Mayenite Electride Nanoparticles Encapsulated in Graphitic Shells Like Carbon Nano Onions: Non-noble-metal Electrocatalysts for Oxygen Reduction Reaction (ORR). Frontiers in Chemistry, 2019, 7, 934.	3.6	27
24	Confinement in two-dimensional materials: Major advances and challenges in the emerging renewable energy conversion and other applications. Progress in Solid State Chemistry, 2021, 61, 100294.	7.2	24
25	Recent progress, challenges, and prospects in emerging group-VIA Xenes: synthesis, properties and novel applications. Nanoscale, 2021, 13, 510-552.	5.6	23
26	Mo-N-co-doped mesoporous TiO2 microspheres with enhanced visible light photocatalytic activity. Materials Research Bulletin, 2017, 96, 10-17.	5.2	21
27	Single step synthesis of highly conductive room-temperature stable cation-substituted mayenite electride target and thin film. Scientific Reports, 2019, 9, 4967.	3.3	21
28	Navigating recent advances in monoelemental materials (Xenes)-fundamental to biomedical applications. Progress in Solid State Chemistry, 2021, 63, 100326.	7.2	20
29	Recent development in graphdiyne and its derivative materials for novel biomedical applications. Journal of Materials Chemistry B, 2021, 9, 9461-9484.	5.8	19
30	Two dimensional nanomaterials-enabled smart light regulation technologies: Recent advances and developments. Optik, 2020, 220, 165191.	2.9	18
31	Novel synthesis, properties and applications of emerging group VA two-dimensional monoelemental materials (2D-Xenes). Materials Chemistry Frontiers, 2021, 5, 6333-6391.	5.9	18
32	A novel MnO–CrN nanocomposite based non-enzymatic hydrogen peroxide sensor. RSC Advances, 2021, 11, 19316-19322.	3.6	18
33	Recent development in emerging phosphorene based novel materials: Progress, challenges, prospects and their fascinating sensing applications. Progress in Solid State Chemistry, 2022, 65, 100336.	7.2	18
34	Mid-Infrared Optoelectronic Devices Based on Two-Dimensional Materials beyond Graphene: Status and Trends. Nanomaterials, 2022, 12, 2260.	4.1	16
35	Enhancement of mechanical and electrical properties for <i>in-situ</i> compatibilization of immiscible polypropylene/polystyrene blends. Materials Research Express, 2019, 6, 105301.	1.6	11
36	Magnetic micro scavengers: highly porous Ni1â^'x Co x Fe2O4 microcubes for efficient disintegration of nitrophenol. Nanotechnology, 2018, 29, 215710.	2.6	10

#	Article	IF	CITATIONS
37	Bimetallic Oxide Nanoflowers Decorated Graphene Oxide Nanosheets as Novel Nanohybrids for 4-Nitrophenol Removal at Room Temperature. Nano Advances, 2017, 2, 1-7.	0.4	3
38	The Silk, Versatile Material for Biological, Optical, and Electronic Fields: Review. Global Journal of Researches in Engineering, 2021, , 1-30.	0.1	1