Taehyo Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/585952/publications.pdf

Version: 2024-02-01

257450 223800 2,842 47 24 46 h-index citations g-index papers 47 47 47 4543 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of Catalyst Crystallinity on V-Based Selective Catalytic Reduction with Ammonia. Nanomaterials, 2021, 11, 1452.	4.1	9
2	Ammonium Ion Enhanced V2O5-WO3/TiO2 Catalysts for Selective Catalytic Reduction with Ammonia. Nanomaterials, 2021, 11, 2677.	4.1	8
3	Small Reduced Graphene Oxides for Highly Efficient Oxygen Reduction Catalysts. International Journal of Molecular Sciences, 2021, 22, 12300.	4.1	6
4	High-Resolution Filtration Patterning of Silver Nanowire Electrodes for Flexible and Transparent Optoelectronic Devices. ACS Applied Materials & Samp; Interfaces, 2020, 12, 32154-32162.	8.0	35
5	A highly transparent thin film hematite with multi-element dopability for an efficient unassisted water splitting system. Nano Energy, 2020, 76, 105089.	16.0	29
6	Slotâ€Die and Rollâ€toâ€Roll Processed Single Junction Organic Photovoltaic Cells with the Highest Efficiency. Advanced Energy Materials, 2019, 9, 1901805.	19.5	62
7	Photovoltaic Devices: Slotâ€Die and Rollâ€toâ€Roll Processed Single Junction Organic Photovoltaic Cells with the Highest Efficiency (Adv. Energy Mater. 36/2019). Advanced Energy Materials, 2019, 9, 1970138.	19.5	3
8	Morphology-Dependent Hole Transfer under Negligible HOMO Difference in Non-Fullerene Acceptor-Based Ternary Polymer Solar Cells. ACS Applied Materials & 2019, 11, 7208-7215.	8.0	28
9	Regio-regular alternating diketopyrrolopyrrole-based D ₁ â€"Aâ€"D ₂ â€"A terpolymers for the enhanced performance of polymer solar cells. RSC Advances, 2019, 9, 42096-42109.	3.6	3
10	Highly efficient polymer solar cells with a thienopyrroledione and benzodithiophene containing planar random copolymer. Polymer Chemistry, 2018, 9, 1216-1222.	3.9	19
11	Nanoparticleâ€Enhanced Silverâ€Nanowire Plasmonic Electrodes for Highâ€Performance Organic Optoelectronic Devices. Advanced Materials, 2018, 30, e1800659.	21.0	67
12	Efficiency Exceeding 11% in Tandem Polymer Solar Cells Employing High Openâ€Circuit Voltage Wideâ€Bandgap Ï€â€Conjugated Polymers. Advanced Energy Materials, 2017, 7, 1700782.	19.5	24
13	Semi-crystalline A1–D–A2-type copolymers for efficient polymer solar cells. Polymer Journal, 2017, 49, 141-148.	2.7	6
14	Ternary Organic Solar Cells Based on Two Highly Efficient Polymer Donors with Enhanced Power Conversion Efficiency. Advanced Energy Materials, 2016, 6, 1502109.	19.5	147
15	Influence of aromatic heterocycle of conjugated side chains on photovoltaic performance of benzodithiophene-based wide-bandgap polymers. Polymer Chemistry, 2016, 7, 4036-4045.	3.9	26
16	Solar Cells: Investigation of Charge Carrier Behavior in High Performance Ternary Blend Polymer Solar Cells (Adv. Energy Mater. 19/2016). Advanced Energy Materials, 2016, 6, .	19.5	0
17	Effect of alkyl chain topology on the structure, optoelectronic properties and solar cell performance of thienopyrroledione-cored oligothiophene chromophores. RSC Advances, 2016, 6, 77655-77665.	3. 6	6
18	Synthesis and photovoltaic properties of benzimidazole-based copolymer with fluorine atom. Polymer Bulletin, 2016, 73, 2511-2519.	3.3	4

#	Article	IF	CITATIONS
19	2,1,3â€benzothiadiazoleâ€5,6â€dicarboxylicimide based semicrystalline polymers for photovoltaic cells. Journal of Polymer Science Part A, 2016, 54, 3826-3834.	2.3	5
20	Investigation of Charge Carrier Behavior in High Performance Ternary Blend Polymer Solar Cells. Advanced Energy Materials, 2016, 6, 1600637.	19.5	85
21	Photocurrent Extraction Efficiency near Unity in a Thick Polymer Bulk Heterojunction. Advanced Functional Materials, 2016, 26, 3324-3330.	14.9	48
22	Syntheses and Properties of Conjugated Polymer with Thiopheneâ€Bridged BTI and Indenoindene Units for Organic Solar Cells. Bulletin of the Korean Chemical Society, 2016, 37, 506-514.	1.9	1
23	Straight chain D–A copolymers based on thienothiophene and benzothiadiazole for efficient polymer field effect transistors and photovoltaic cells. Polymer Chemistry, 2016, 7, 4638-4646.	3.9	29
24	Quinoxaline–thiophene based thick photovoltaic devices with an efficiency of â ¹ √48%. Journal of Materials Chemistry A, 2016, 4, 9967-9976.	10.3	49
25	High-Performance Solution-Processed Non-Fullerene Organic Solar Cells Based on Selenophene-Containing Perylene Bisimide Acceptor. Journal of the American Chemical Society, 2016, 138, 375-380.	13.7	643
26	Medium bandgap copolymers based on carbazole and quinoxaline exceeding $1.0\mathrm{V}$ open-circuit voltages. RSC Advances, $2016,6,17624\text{-}17631.$	3.6	5
27	Control of Charge Dynamics via Use of Nonionic Phosphonate Chains and Their Effectiveness for Inverted Structure Solar Cells. Advanced Energy Materials, 2015, 5, 1500844.	19.5	28
28	Syntheses and Properties of Copolymers with <i>N</i> à€Alkylâ€2,2â€2â€bithiopheneâ€3,3â€2â€dicarboximide U Polymer Solar Cells. Bulletin of the Korean Chemical Society, 2015, 36, 2238-2246.	nit for 1.9	3
29	Syntheses and solar cell applications of conjugated copolymers consisting of 3,3′-dicarboximide and benzodithiophene units with thiophene and bithiophene linkage. Solar Energy Materials and Solar Cells, 2015, 141, 24-31.	6.2	3
30	Benzodithiophene-thiophene-based photovoltaic polymers with different side-chains. Journal of Polymer Science Part A, 2015, 53, 854-862.	2.3	15
31	Dithienogermoleâ€Containing Smallâ€Molecule Solar Cells with 7.3% Efficiency: Inâ€Depth Study on the Effects of Heteroatom Substitution of Si with Ge. Advanced Energy Materials, 2015, 5, 1402044.	19.5	40
32	2,7-Carbazole and thieno[3,4-c]pyrrole-4,6-dione based copolymers with deep highest occupied molecular orbital for photovoltaic cells. Current Applied Physics, 2015, 15, 654-661.	2.4	4
33	Spectroscopically tracking charge separation in polymer : fullerene blends with a three-phase morphology. Energy and Environmental Science, 2015, 8, 2713-2724.	30.8	44
34	Syntheses and solar cell applications of conjugated copolymers containing tetrafluorophenylene units. Polymer, 2015, 71, 113-121.	3.8	5
35	Smallâ€Bandgap Polymer Solar Cells with Unprecedented Shortâ€Circuit Current Density and High Fill Factor. Advanced Materials, 2015, 27, 3318-3324.	21.0	294
36	Trifluoromethyl benzimidazole-based conjugated polymers with deep HOMO levels for organic photovoltaics. Synthetic Metals, 2015, 205, 112-120.	3.9	14

#	Article	IF	CITATIONS
37	Synthesis and photovoltaic properties of alkoxy-benzimidazole containing low band gap polymers. Thin Solid Films, 2015, 580, 29-35.	1.8	6
38	Thienoisoindigo (TIIG)-based small molecules for the understanding of structure–property–device performance correlations. Journal of Materials Chemistry A, 2015, 3, 9899-9908.	10.3	33
39	Capillary Printing of Highly Aligned Silver Nanowire Transparent Electrodes for High-Performance Optoelectronic Devices. Nano Letters, 2015, 15, 7933-7942.	9.1	196
40	Interplay of Intramolecular Noncovalent Coulomb Interactions for Semicrystalline Photovoltaic Polymers. Chemistry of Materials, 2015, 27, 5997-6007.	6.7	150
41	Synthesis of the Copolymer Based on Diketopyrrolopyrrole with Didecyl Chain for OPVs. Molecular Crystals and Liquid Crystals, 2014, 600, 88-98.	0.9	1
42	Replacing the metal oxide layer with a polymer surface modifier for high-performance inverted polymer solar cells. RSC Advances, 2014, 4, 4791-4795.	3.6	34
43	Synthesis of fluorinated analogues of a practical polymer TQ for improved open-circuit voltages in polymer solar cells. Polymer Chemistry, 2014, 5, 2540.	3.9	40
44	Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices. Nature Photonics, 2013, 7, 732-738.	31.4	501
45	Synthesis of the novel 2,2-bithiophene-3,3-dicarboximide-based conjugated copolymers for OPVs. Synthetic Metals, 2013, 177, 65-71.	3.9	8
46	Low bandgap small molecules based on 2,2-bithiophene-3,3-dicarboximide for soluble-processed solar cells. Synthetic Metals, 2013, 183, 16-23.	3.9	7
47	Highly efficient plasmonic organic optoelectronic devices based on a conducting polymer electrode incorporated with silver nanoparticles. Energy and Environmental Science, 2013, 6, 1949.	30.8	69