

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5859314/publications.pdf Version: 2024-02-01

Æ^OÅ∾≌Ä∎

#	Article	IF	CITATIONS
1	Recent and Future Climate Change in Northwest China. Climatic Change, 2007, 80, 379-393.	1.7	749
2	A Bias-Corrected Precipitation Climatology for China. Journal of Hydrometeorology, 2004, 5, 1147-1160.	0.7	137
3	The retreat of glaciers in response to recent climate warming in western China. Annals of Glaciology, 2006, 43, 97-105.	2.8	137
4	Performance evaluation of latest integrated multi-satellite retrievals for Global Precipitation Measurement (IMERG) over the northern highlands of Pakistan. Atmospheric Research, 2018, 205, 134-146.	1.8	132
5	Observed degree-day factors and their spatial variation on glaciers in western China. Annals of Glaciology, 2006, 43, 301-306.	2.8	120
6	Inter-Calibrating SMMR, SSM/I and SSMI/S Data to Improve the Consistency of Snow-Depth Products in China. Remote Sensing, 2015, 7, 7212-7230.	1.8	111
7	Clacier retreat as a result of climate warming and increased precipitation in the Tarim river basin, northwest China. Annals of Claciology, 2006, 43, 91-96.	2.8	108
8	Contributions of climate and human activities to changes in runoff of the Yellow and Yangtze rivers from 1950 to 2008. Science China Earth Sciences, 2013, 56, 1398-1412.	2.3	106
9	Changes of glacial lakes and implications in Tian Shan, central Asia, based on remote sensing data from 1990 to 2010. Environmental Research Letters, 2013, 8, 044052.	2.2	104
10	Increasing cryospheric hazards in a warming climate. Earth-Science Reviews, 2021, 213, 103500.	4.0	83
11	Clacier changes during the last forty years in the Tarim Interior River basin, northwest China. Progress in Natural Science: Materials International, 2009, 19, 727-732.	1.8	79
12	Coupling a glacier melt model to the Variable Infiltration Capacity (VIC) model for hydrological modeling in north-western China. Environmental Earth Sciences, 2013, 68, 87-101.	1.3	74
13	The role of permafrost and soil water in distribution of alpine grassland and its NDVI dynamics on the Qinghai-Tibetan Plateau. Global and Planetary Change, 2016, 147, 40-53.	1.6	72
14	Environmental controls on soil organic carbon and nitrogen stocks in the highâ€altitude arid western Qinghaiâ€Tibetan Plateau permafrost region. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 176-187.	1.3	72
15	Similarities and improvements of GPM IMERG upon TRMM 3B42 precipitation product under complex topographic and climatic conditions over Hexi region, Northeastern Tibetan Plateau. Atmospheric Research, 2019, 218, 347-363.	1.8	72
16	Responses of alpine grassland on Qinghai–Tibetan plateau to climate warming and permafrost degradation: a modeling perspective. Environmental Research Letters, 2014, 9, 074014.	2.2	68
17	A conceptual model of the controlling factors of soil organic carbon and nitrogen densities in a permafrost-affected region on the eastern Qinghai-Tibetan Plateau. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 1705-1717.	1.3	68
18	Impact of atmospheric convection on south Tibet summer precipitation isotopologue composition using a combination of in situ measurements, satellite data, and atmospheric general circulation modeling. Journal of Geophysical Research D: Atmospheres, 2015, 120, 3852-3871.	1.2	66

ư_,Å≫^⁰ Ä,•

#	Article	IF	CITATIONS
19	Soil Organic Carbon and Its Relationship to Vegetation Communities and Soil Properties in Permafrost Areas of the Central Western Qinghaiâ€īibet Plateau, China. Permafrost and Periglacial Processes, 2012, 23, 162-169.	1.5	60
20	Soil organic carbon and total nitrogen pools in permafrost zones of the Qinghai-Tibetan Plateau. Scientific Reports, 2018, 8, 3656.	1.6	60
21	Monitoring the glacier changes in the Muztag Ata and Konggur mountains, east Pamirs, based on Chinese Glacier Inventory and recent satellite imagery. Annals of Glaciology, 2006, 43, 79-85.	2.8	55
22	Glacier changes in the west Kunlun Shan from 1970 to 2001 derived from Landsat TM/ETM+ and Chinese glacier inventory data. Annals of Glaciology, 2007, 46, 204-208.	2.8	50
23	The surface energy budget and evapotranspiration in the Tanggula region on the Tibetan Plateau. Cold Regions Science and Technology, 2008, 52, 326-340.	1.6	46
24	Active layer thickness variations on the Qinghai–Tibet Plateau under the scenarios of climate change. Environmental Earth Sciences, 2012, 66, 849-857.	1.3	46
25	Characterizing the May 2015 Karayaylak Glacier surge in the eastern Pamir Plateau using remote sensing. Journal of Glaciology, 2016, 62, 944-953.	1.1	46
26	The importance of aspect for modelling the hydrological response in a glacier catchment in Central Asia. Hydrological Processes, 2017, 31, 2842-2859.	1.1	44
27	Evaluation of High-Resolution Satellite-Based Real-Time and Post-Real-Time Precipitation Estimates during 2010 Extreme Flood Event in Swat River Basin, Hindukush Region. Advances in Meteorology, 2016, 2016, 1-8.	0.6	42
28	Glacier meltwater and runoff modelling, Keqicar Baqi glacier,southwestern Tien Shan, China. Journal of Glaciology, 2007, 53, 91-98.	1.1	40
29	Toward an improved data stewardship and service for environmental and ecological science data in West China. International Journal of Digital Earth, 2011, 4, 347-359.	1.6	40
30	Noah Modelling of the Permafrost Distribution and Characteristics in the West Kunlun Area, Qinghaiâ€Tibet Plateau, China. Permafrost and Periglacial Processes, 2015, 26, 160-174.	1.5	38
31	Importance of Mountain Glaciers as a Source of Dissolved Organic Carbon. Journal of Geophysical Research F: Earth Surface, 2018, 123, 2123-2134.	1.0	36
32	Changes in the elevation and extent of two glaciers along the Yanglonghe river, Qilian Shan, China. Journal of Glaciology, 2010, 56, 309-317.	1.1	35
33	Responses of Alpine Grassland to Climate Warming and Permafrost Thawing in Two Basins with Different Precipitation Regimes on the Qinghai-Tibetan Plateaus. Arctic, Antarctic, and Alpine Research, 2015, 47, 125-131.	0.4	35
34	Thinning and retreat of Xiao Dongkemadi glacier, Tibetan Plateau, since 1993. Journal of Glaciology, 2008, 54, 949-951.	1.1	34
35	Glacier changes during the past century in the Gangrigabu mountains, southeast Qinghai–Xizang (Tibetan) Plateau, China. Annals of Glaciology, 2006, 43, 187-193.	2.8	33
36	Effects of permafrost thaw-subsidence on soil bacterial communities in the southern Qinghai-Tibetan Plateau. Applied Soil Ecology, 2018, 128, 81-88.	2.1	33

ư_sÅ≫^⁰ Ä₅•

#	Article	IF	CITATIONS
37	Regional differences in global glacier retreat from 1980 to 2015. Advances in Climate Change Research, 2019, 10, 203-213.	2.1	33
38	Modeling soil organic carbon spatial distribution for a complex terrain based on geographically weighted regression in the eastern Qinghai-Tibetan Plateau. Catena, 2020, 187, 104399.	2.2	32
39	Effects of bias correction on precipitation trend over China. Journal of Geophysical Research, 2007, 112, .	3.3	31
40	Mass-balance characteristics of Ürümqi glacier No. 1, Tien Shan, China. Annals of Glaciology, 2006, 43, 323-328.	2.8	30
41	Index for hazard of Glacier Lake Outburst flood of Lake Merzbacher by satellite-based monitoring of lake area and ice cover. Global and Planetary Change, 2013, 107, 229-237.	1.6	29
42	Seasonal variations of pH and electrical conductivity in a snow-firn pack on Glacier No. 1, eastern Tianshan, China. Cold Regions Science and Technology, 2007, 48, 55-63.	1.6	27
43	Mineralisation and Changes in the Fractions of Soil Organic Matter in Soils of the Permafrost Region, Qinghaiâ€Tibet Plateau, China. Permafrost and Periglacial Processes, 2014, 25, 35-44.	1.5	27
44	Diurnal dynamics of minor and trace elements in stream water draining Dongkemadi Glacier on the Tibetan Plateau and its environmental implications. Journal of Hydrology, 2016, 541, 1104-1118.	2.3	27
45	Remote estimation of terrestrial evapotranspiration by Landsat 5 TM and the SEBAL model in cold and highâ€altitude regions: a case study of the upper reach of the Shule River Basin, China. Hydrological Processes, 2017, 31, 514-524.	1.1	27
46	Comparison of two successive versions 6 and 7 of <scp>TMPA</scp> satellite precipitation products with rain gauge data over Swat Watershed, Hindukush Mountains, Pakistan. Atmospheric Science Letters, 2016, 17, 270-279.	0.8	26
47	Glacier changes in the Koshi River basin, central Himalaya, from 1976 to 2009, derived from remote-sensing imagery. Annals of Glaciology, 2014, 55, 61-68.	2.8	25
48	Quick Release of Internal Water Storage in a Glacier Leads to Underestimation of the Hazard Potential of Glacial Lake Outburst Floods From Lake Merzbacher in Central Tian Shan Mountains. Geophysical Research Letters, 2017, 44, 9786-9795.	1.5	25
49	Understanding the impact of mountain landscapes on water balance in the upper Heihe River watershed in northwestern China. Journal of Arid Land, 2013, 5, 366-383.	0.9	24
50	Regional difference of annual precipitation and discharge variation over west China during the last 50 years. Science in China Series D: Earth Sciences, 2007, 50, 936-945.	0.9	22
51	A New Hybrid Forecasting Approach Applied to Hydrological Data: A Case Study on Precipitation in Northwestern China. Water (Switzerland), 2016, 8, 367.	1.2	22
52	Response of the snowmelt and glacier runoff to the climate warming-up in the last 40 years in Xinjiang Autonomous Region, China. Science in China Series D: Earth Sciences, 1999, 42, 44-51.	0.9	21
53	Monitoring of frozen soil hydrology in macro-scale in the Qinghai-Xizang Plateau. Science Bulletin, 2000, 45, 1143-1149.	1.7	21
54	Influence of land cover on riverine dissolved organic carbon concentrations and export in the Three Rivers Headwater Region of the Qinghai-Tibetan Plateau. Science of the Total Environment, 2018, 630, 314-322.	3.9	21

ư¸Å»º Ä₅•

#	Article	IF	CITATIONS
55	Quantification of spatial temporal variability of snow cover and hydro-climatic variables based on multi-source remote sensing data in the Swat watershed, Hindukush Mountains, Pakistan. Meteorology and Atmospheric Physics, 2019, 131, 467-486.	0.9	21
56	Effects of plateau pikas' foraging and burrowing activities on vegetation biomass and soil organic carbon of alpine grasslands. Plant and Soil, 2021, 458, 201-216.	1.8	21
57	Fluctuations of the Semi-Arid Zone in China, and Consequences for Society. Climatic Change, 2005, 72, 171-188.	1.7	20
58	Application of a degree-day model for the determination of contributions to glacier meltwater and runoff near Keqicar Baqi glacier, southwestern Tien Shan. Annals of Glaciology, 2006, 43, 280-284.	2.8	20
59	Investigating soil thermodynamic parameters of the active layer on the northern Qinghai-Tibetan Plateau. Environmental Earth Sciences, 2014, 71, 709-722.	1.3	20
60	Spatial variation of stable isotopes in different waters during melt season in the Laohugou Glacial Catchment, Shule River basin. Journal of Mountain Science, 2016, 13, 1453-1463.	0.8	20
61	Globally elevated chemical weathering rates beneath glaciers. Nature Communications, 2022, 13, 407.	5.8	20
62	Progress on observation of cryospheric components and climate-related studies in China. Advances in Atmospheric Sciences, 2008, 25, 164-180.	1.9	19
63	The impacts of permafrost change on NPP and implications: A case of the source regions of Yangtze and Yellow Rivers. Journal of Mountain Science, 2011, 8, 437-447.	0.8	19
64	Spatial coherence of variations in seasonal extreme precipitation events over Northwest Arid Region, China. International Journal of Climatology, 2015, 35, 4642-4654.	1.5	19
65	Seasonal controls of meltwater runoff chemistry and chemical weathering at Urumqi Glacier No.1 in central Asia. Hydrological Processes, 2019, 33, 3258-3281.	1.1	17
66	Intense Chemical Weathering at Glacial Meltwater-Dominated Hailuogou Basin in the Southeastern Tibetan Plateau. Water (Switzerland), 2019, 11, 1209.	1.2	16
67	Modeling the carbon dynamics of alpine grassland in the Qinghai-Tibetan Plateau under scenarios of 1.5 and 2°C global warming. Advances in Climate Change Research, 2019, 10, 80-91.	2.1	16
68	Seasonal and interannual changes of river chemistry in the source region of Yellow River, Tibetan Plateau. Applied Geochemistry, 2020, 119, 104638.	1.4	16
69	Impact of global warming on water resource in arid area of Northwest China. Journal of Mountain Science, 2005, 2, 313-318.	0.8	15
70	Assessment of groundwater contamination by NO3 â^' using geographical information system in the Zhangye Basin, Northwest China. Environmental Earth Sciences, 2010, 60, 809-816.	1.3	15
71	The impact of surface energy exchange on the thawing process of active layer over the northern Qinghai–Xizang Plateau, China. Environmental Earth Sciences, 2014, 72, 2091-2099.	1.3	15
72	An 80-year summer temperature history from the Xiao Dongkemadi ice core in the central Tibetan Plateau and its association with atmospheric circulation. Journal of Asian Earth Sciences, 2015, 98, 285-295.	1.0	14

ư¸Å≫º Ä₅•

#	Article	IF	CITATIONS
73	Temporal and spatial variations of global solar radiation over the Qinghai–Tibetan Plateau during the past 40Âyears. Theoretical and Applied Climatology, 2013, 113, 573-583.	1.3	13
74	Dissolved Iron Supply from Asian Glaciers: Local Controls and a Regional Perspective. Global Biogeochemical Cycles, 2019, 33, 1223-1237.	1.9	13
75	Changes in physical features of Glacier No. 1 of the Tianshan Mountains in response to climate change. Science Bulletin, 2011, 56, 2820-2827.	1.7	12
76	Stable isotopes in precipitation in Xilin River Basin, northern China and their implications. Chinese Geographical Science, 2012, 22, 531-540.	1.2	12
77	Seasonal changes in labile organic matter as a function of environmental factors in a relict permafrost region on the Qinghai-Tibetan Plateau. Catena, 2019, 180, 194-202.	2.2	12
78	Integrated modeling environment and a preliminary application on the Heihe River Basin, China. Science China Technological Sciences, 2011, 54, 2145-2156.	2.0	11
79	Initial estimate of the contribution of cryospheric change in China to sea level rise. Science Bulletin, 2011, 56, 1661-1664.	1.7	11
80	Validation of TRMM 3B42V7 Rainfall Product under Complex Topographic and Climatic Conditions over Hexi Region in the Northwest Arid Region of China. Water (Switzerland), 2018, 10, 1006.	1.2	11
81	Response of meltwater runoff to air-temperature fluctuations on Keqikaer glacier, south slope of Tuomuer mountain, western China. Annals of Glaciology, 2006, 43, 275-279.	2.8	10
82	Impacts of snow disaster on meat production and adaptation: an empirical analysis in the yellow river source region. Sustainability Science, 2016, 11, 249-260.	2.5	10
83	The hydrological linkage of mountains and plains in the arid region of northwest China. Science Bulletin, 2013, 58, 3140-3147.	1.7	9
84	Methodological comparison of alpine meadow evapotranspiration on the Tibetan Plateau, China. PLoS ONE, 2017, 12, e0189059.	1.1	9
85	Streamflow generation in <scp>semiâ€arid</scp> , <scp>glacierâ€covered</scp> , montane catchments in the upper Shule River, Qilian Mountains, northeastern Tibetan plateau. Hydrological Processes, 2021, 35, e14276.	1.1	9
86	Detection of precipitation variability based on entropy over nearly 50Âyears in Xinjiang, northwestern China. Theoretical and Applied Climatology, 2015, 122, 609-618.	1.3	8
87	Seasonal variations of organic carbon and nitrogen in the upper basins of Yangtze and Yellow Rivers. Journal of Mountain Science, 2017, 14, 1577-1590.	0.8	8
88	Climate-driven acceleration of glacier mass loss on global and regional scales during 1961–2016. Science China Earth Sciences, 2021, 64, 589-599.	2.3	6
89	Models and measurements of seven years of evapotranspiration on a high elevation site on the Central Tibetan Plateau. Journal of Mountain Science, 2020, 17, 3039-3053.	0.8	6
90	Evapotranspiration of low-lying prairie wetland in middle reaches of heihe river in northwest China. Chinese Geographical Science, 2005, 15, 325-329.	1.2	5

ư_,Å»⁰ Ä,•

#	Article	IF	CITATIONS
91	Regimes of runoff components on the debris-covered Koxkar glacier in western China. Journal of Mountain Science, 2015, 12, 313-329.	0.8	5
92	Defining Runoff Indices and Analyzing Their Relationships with Associated Precipitation and Temperature Indices for Upper River Basins in the Northwest Arid Region of China. Water (Switzerland), 2017, 9, 618.	1.2	5
93	Role of permafrost in resilience of social-ecological system and its spatio-temporal dynamics in the source regions of Yangtze and Yellow Rivers. Journal of Mountain Science, 2019, 16, 179-194.	0.8	5
94	The variation of precipitation and rain days for different intensity classes during the rainy season in the Qilian Mountains, Northwest China. Theoretical and Applied Climatology, 2021, 144, 163-178.	1.3	5
95	Energy balance of irrigated intercropping field in the middle reaches of Heihe River basin. Chinese Geographical Science, 2006, 16, 243-248.	1.2	4
96	Adaptation management of mountain tourism service: the case of the source regions of the Yangtze and Yellow River. Journal of Mountain Science, 2009, 6, 299-310.	0.8	3
97	Influence of Alpine Meadow Land Cover Differences on Precipitation-Runoff Processes on the Qinghai–Tibet Plateau, China. Environmental Engineering Science, 2010, 27, 209-213.	0.8	2
98	A study of the effect of global radiation and other factors on seasonal maximum frozen depth in the Tibetan Plateau. , 2011, , .		0