Charl F J Faul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/585910/publications.pdf

Version: 2024-02-01

120 papers 6,284 citations

43 h-index 75 g-index

128 all docs

128 docs citations

times ranked

128

6751 citing authors

#	Article	IF	CITATIONS
1	Design and Control of Perylene Supramolecular Polymers through Imide Substitutions. Chemistry - A European Journal, 2022, 28, .	3.3	14
2	Thionated PDI supramolecular polymers: controlling aggregation mechanisms, morphology and function. Journal of Materials Chemistry C, 2022, 10, 2828-2837.	5.5	4
3	Frontispiece: Design and Control of Perylene Supramolecular Polymers through Imide Substitutions. Chemistry - A European Journal, 2022, 28, .	3.3	1
4	Azobenzene isomerization in condensed matter: lessons for the design of efficient light-responsive soft-matter systems. Materials Advances, 2021, 2, 4152-4164.	5.4	18
5	Crosslinked porous polyimides: structure, properties and applications. Polymer Chemistry, 2021, 12, 6494-6514.	3.9	23
6	Metal-free Synthesis of Pyridyl Conjugated Microporous Polymers for Photocatalytic Hydrogen Evolution. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1004-1012.	3.8	13
7	Conjugated microporous polymers for energy storage: Recent progress and challenges. Nano Energy, 2021, 85, 105958.	16.0	110
8	Efficient and Controlled Seeded Growth of Poly(3-hexylthiophene) Block Copolymer Nanofibers through Suppression of Homogeneous Nucleation. Macromolecules, 2021, 54, 11269-11280.	4.8	14
9	A crosslinking alkylation strategy to construct nitrogen-enriched tetraphenylmethane-based porous organic polymers as efficient carbon dioxide and iodine adsorbents. Chemical Engineering Journal, 2020, 382, 122998.	12.7	65
10	Surface Patterning of Uniform 2D Platelet Block Comicelles via Coronal Chain Collapse. ACS Macro Letters, 2020, 9, 1514-1520.	4.8	7
11	Conjugated Microporous Polymer Network Grafted Carbon Nanotube Fibers with Tunable Redox Activity for Efficient Flexible Wearable Energy Storage. Chemistry of Materials, 2020, 32, 8276-8285.	6.7	57
12	Exploiting Hansen solubility parameters to tune porosity and function in conjugated microporous polymers. Journal of Materials Chemistry A, 2020, 8, 22657-22665.	10.3	32
13	Surface controlled pseudo-capacitive reactions enabling ultra-fast charging and long-life organic lithium ion batteries. Sustainable Energy and Fuels, 2020, 4, 4179-4185.	4.9	30
14	Controlling the Thermoelectric Properties of Organometallic Coordination Polymers via Ligand Design. Advanced Functional Materials, 2020, 30, 2003106.	14.9	15
15	Structural relationships for the design of responsive azobenzene-based lyotropic liquid crystals. Physical Chemistry Chemical Physics, 2020, 22, 4086-4095.	2.8	8
16	Tunable Surface Area, Porosity, and Function in Conjugated Microporous Polymers. Angewandte Chemie, 2019, 131, 11841-11845.	2.0	14
17	Linear and Branched Fiber-like Micelles from the Crystallization-Driven Self-Assembly of Heterobimetallic Block Copolymer Polyelectrolyte/Surfactant Complexes. Macromolecules, 2019, 52, 7289-7300.	4.8	17
18	Tipping the polaron–bipolaron balance: concentration and spin effects in doped oligo(aniline)s observed by UV-vis-NIR and TD-DFT. Molecular Systems Design and Engineering, 2019, 4, 103-109.	3.4	6

#	Article	IF	CITATIONS
19	Molecular engineering of polymeric supra-amphiphiles. Chemical Society Reviews, 2019, 48, 989-1003.	38.1	90
20	Tunable Surface Area, Porosity, and Function in Conjugated Microporous Polymers. Angewandte Chemie - International Edition, 2019, 58, 11715-11719.	13.8	109
21	Luminescent and Swellable Conjugated Microporous Polymers for Detecting Nitroaromatic Explosives and Removing Harmful Organic Vapors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 48352-48362.	8.0	31
22	Laserâ€Scribed Graphene Oxide Electrodes for Soft Electroactive Devices. Advanced Materials Technologies, 2019, 4, 1800232.	5.8	12
23	1D Selfâ€Assembly and Ice Recrystallization Inhibition Activity of Antifreeze Glycopeptideâ€Functionalized Perylene Bisimides. Chemistry - A European Journal, 2018, 24, 7834-7839.	3.3	19
24	Uniform Polyselenophene Block Copolymer Fiberlike Micelles and Block Co-micelles via Living Crystallization-Driven Self-Assembly. Macromolecules, 2018, 51, 1002-1010.	4.8	46
25	An addressable packing parameter approach for reversibly tuning the assembly of oligo(aniline)-based supra-amphiphiles. Chemical Science, 2018, 9, 4392-4401.	7.4	18
26	Electroactive Amphiphiles for Addressable Supramolecular Nanostructures. ChemNanoMat, 2018, 4, 741-752.	2.8	8
27	Living Supramolecular Polymerisation of Perylene Diimide Amphiphiles by Seeded Growth under Kinetic Control. Chemistry - A European Journal, 2018, 24, 15556-15565.	3.3	42
28	3D printing with light: towards additive manufacturing of soft, electroactive structures. , $2018, \ldots$		5
29	Uniform "Patchy―Platelets by Seeded Heteroepitaxial Growth of Crystallizable Polymer Blends in Two Dimensions. Journal of the American Chemical Society, 2017, 139, 4409-4417.	13.7	78
30	Conjugated Microporous Polycarbazole Networks as Precursors for Nitrogen-Enriched Microporous Carbons for CO ₂ Storage and Electrochemical Capacitors. Chemistry of Materials, 2017, 29, 4885-4893.	6.7	140
31	Nitrogen-Rich Conjugated Microporous Polymers: Facile Synthesis, Efficient Gas Storage, and Heterogeneous Catalysis. ACS Applied Materials & Storage, 2017, 9, 38390-38400.	8.0	131
32	Supramolecular Polymerization from Controllable Fabrication to Living Polymerization. Macromolecular Rapid Communications, 2017, 38, 1700312.	3.9	41
33	Soft Photochemical Actuation Systems: Tuning Performance Through Solvent Selection. , 2017, , .		0
34	Uniform electroactive fibre-like micelle nanowires for organic electronics. Nature Communications, 2017, 8, 15909.	12.8	120
35	Toward Direct Laser Writing of Actively Tuneable 3D Photonic Crystals. Advanced Optical Materials, 2017, 5, 1600458.	7.3	30
36	Light-Triggered Soft Artificial Muscles:ÂMolecular-Level Amplification of Actuation Control Signals. Scientific Reports, 2017, 7, 9197.	3.3	41

#	Article	IF	CITATIONS
37	Biomimetic photo-actuation: progress and challenges. , 2016, , .		1
38	Highly Efficient and Reversible Iodine Capture in Hexaphenylbenzene-Based Conjugated Microporous Polymers. Macromolecules, 2016, 49, 6322-6333.	4.8	307
39	Exploring Redox States, Doping and Ordering of Electroactive Starâ€6haped Oligo(aniline)s. Chemistry - A European Journal, 2016, 22, 16950-16956.	3.3	15
40	Chiral Perylene Materials by Ionic Self-Assembly. Langmuir, 2016, 32, 9023-9032.	3.5	21
41	Influence of solvent polarity on the structure of drop-cast electroactive tetra(aniline)-surfactant thin films. Physical Chemistry Chemical Physics, 2016, 18, 24498-24505.	2.8	22
42	Conductiveâ€AFM Patterning of Organic Semiconductors. Small, 2015, 11, 5054-5058.	10.0	13
43	Scanning Tunneling Microscopy: Imaging the Predicted Isomerism of Oligo(aniline)s: A Scanning Tunneling Microscopy Study (Small 28/2015). Small, 2015, 11, 3429-3429.	10.0	0
44	Local and macroscopic electrostatic interactions in single \hat{l}_{\pm} -helices. Nature Chemical Biology, 2015, 11, 221-228.	8.0	72
45	Helically structured metal–organic frameworks fabricated by using supramolecular assemblies as templates. Chemical Science, 2015, 6, 1910-1916.	7.4	34
46	Chiral Perylene Diimides: Building Blocks for Ionic Selfâ€Assembly. Chemistry - A European Journal, 2015, 21, 5118-5128.	3.3	66
47	Graphene oxide as a template for a complex functional oxide. CrystEngComm, 2015, 17, 6094-6097.	2.6	14
48	Imaging the Predicted Isomerism of Oligo(aniline)s: A Scanning Tunneling Microscopy Study. Small, 2015, 11, 3430-3434.	10.0	11
49	Modelling and Analysis of pH Responsive Hydrogels for the Development of Biomimetic Photo-Actuating Structures. Materials Research Society Symposia Proceedings, 2015, 1718, 65-70.	0.1	2
50	Fluorescent Microporous Polyimides Based on Perylene and Triazine for Highly CO ₂ -Selective Carbon Materials. Macromolecules, 2015, 48, 2064-2073.	4.8	147
51	Self-assembly of tetra(aniline) nanowires in acidic aqueous media with ultrasonic irradiation. Journal of Materials Chemistry C, 2015, 3, 11945-11952.	5.5	27
52	Self-Assembly of a Functional Oligo(Aniline)-Based Amphiphile into Helical Conductive Nanowires. Journal of the American Chemical Society, 2015, 137, 14288-14294.	13.7	57
53	Macrocyclic Amineâ€Linked Oligocarbazole Hollow Microspheres: Facile Synthesis and Efficient Lead Sorbents. Macromolecular Rapid Communications, 2014, 35, 1833-1839.	3.9	8
54	Conjugated microporous polytriphenylamine networks. Chemical Communications, 2014, 50, 8002-8005.	4.1	101

#	Article	IF	CITATIONS
55	Self-assembly and pH response of electroactive liquid core–tetra(aniline) shell microcapsules. Journal of Materials Chemistry B, 2014, 2, 4720.	5.8	32
56	lonic Self-Assembly for Functional Hierarchical Nanostructured Materials. Accounts of Chemical Research, 2014, 47, 3428-3438.	15.6	219
57	Oligo(aniline) nanofilms: from molecular architecture to microstructure. Soft Matter, 2013, 9, 10501.	2.7	24
58	Conductive, Monodisperse Polyaniline Nanofibers of Controlled Length Using Wellâ€Defined Cylindrical Block Copolymer Micelles as Templates. Chemistry - A European Journal, 2013, 19, 13030-13039.	3.3	28
59	Tuning structure and function in tetra(aniline)-based rod–coil–rod architectures. Journal of Materials Chemistry C, 2013, 1, 6428.	5.5	16
60	Controlling the self-assembly of cationic bolaamphiphiles: counterion-directed transitions from OD/1D to exclusively 2D planar structures. Chemical Science, 2013, 4, 4486.	7.4	37
61	Tetragonal and Helical Morphologies from Polyferrocenylsilane Block Polyelectrolytes via Ionic Self-Assembly. Journal of the American Chemical Society, 2013, 135, 2455-2458.	13.7	35
62	Opportunities in Highâ€Speed Atomic Force Microscopy. Small, 2013, 9, 3201-3211.	10.0	39
63	Monolayer behavior of calix-4-resorcinarenes and their surfactant complexes. Thin Solid Films, 2012, 520, 6989-6993.	1.8	1
64	Double Smectic Self-Assembly in Block Copolypeptide Complexes. Biomacromolecules, 2012, 13, 3572-3580.	5.4	16
65	Bolaamphiphiles Bearing Bipyridine as Mesogenic Core: Rational Exploitation of Molecular Architectures for Controlled Self-Assembly. Langmuir, 2012, 28, 5023-5030.	3.5	24
66	Block-like electroactive oligo(aniline)s: anisotropic structures with anisotropic function. Journal of Materials Chemistry, 2012, 22, 16230.	6.7	29
67	Surface-Relief Gratings and Stable Birefringence Inscribed Using Light of Broad Spectral Range in Supramolecular Polymer-Bisazobenzene Complexes. Journal of Physical Chemistry C, 2012, 116, 2363-2370.	3.1	57
68	Structured oligo(aniline) nanofilms via ionic self-assembly. Soft Matter, 2012, 8, 2824-2832.	2.7	42
69	Selfâ€Assembled Sugarâ€6ubstituted Perylene Diimide Nanostructures with Homochirality and High Gas Sensitivity. Advanced Functional Materials, 2012, 22, 4149-4158.	14.9	107
70	Redoxâ€Active, Organometallic Surfaceâ€Relief Gratings from Azobenzeneâ€Containing Polyferrocenylsilane Block Copolymers. Advanced Materials, 2012, 24, 926-931.	21.0	59
71	Lysophosphatidic acid-functionalised titanium as a superior surface for supporting human osteoblast (MG63) maturation., 2012, 23, 348-361.		13
72	Redox-active mesomorphic complexes from the ionic self-assembly of cationic polyferrocenylsilane polyelectrolytes and anionic surfactants. Soft Matter, 2011, 7, 10462.	2.7	23

#	Article	IF	Citations
73	Modulating helicity through amphiphilicityâ€"tuning supramolecular interactions for the controlled assembly of perylenes. Chemical Communications, 2011, 47, 5554-5556.	4.1	112
74	Hierarchical Organometallic Materials: Self-Assembly of Organic–Organometallic Polyferrocenylsilane Block Polyelectrolyte–Surfactant Complexes in Bulk and in Thin Films. Macromolecules, 2011, 44, 9324-9334.	4.8	23
75	Effect of Chain Length on the Interaction between Modified Organic Salts Containing Hydrocarbon Chains and Poly(N-isopropylacrylamide-co-acrylic acid) Microgel Particles. Langmuir, 2011, 27, 4362-4370.	3.5	9
76	Functional block-like structures from electroactive tetra(aniline) oligomers. Journal of Materials Chemistry, 2011, 21, 18137.	6.7	67
77	Selfâ€Assembled Polymeric Supramolecular Frameworks. Angewandte Chemie - International Edition, 2011, 50, 2516-2520.	13.8	39
78	Delineating Poly(Aniline) Redox Chemistry by Using Tailored Oligo(Aryleneamine)s: Towards Oligo(Aniline)â€Based Organic Semiconductors with Tunable Optoelectronic Properties. Chemistry - A European Journal, 2011, 17, 12512-12521.	3.3	45
79	Organized Nanostructured Complexes of Polyoxometalates and Surfactants that Exhibit Photoluminescence and Electrochromism. Advanced Functional Materials, 2009, 19, 642-652.	14.9	141
80	Towards functional nanostructures: Ionic self-assembly of polyoxometalates and surfactants. Current Opinion in Colloid and Interface Science, 2009, 14, 62-70.	7.4	56
81	Nucleotide-Based Templates for Nanoparticle Productionâ [*] Exploiting Multiple Noncovalent Interactions. Chemistry of Materials, 2009, 21, 3270-3274.	6.7	10
82	Effect of Double-Tailed Surfactant Architecture on the Conformation, Self-Assembly, and Processing in Polypeptideâ^'Surfactant Complexes. Biomacromolecules, 2009, 10, 2787-2794.	5.4	13
83	Helical supramolecular aggregates, mesoscopic organisation and nanofibers of a perylenebisimide–chiral surfactant complex via ionic self-assembly. Journal of Materials Chemistry, 2009, 19, 2356.	6.7	96
84	Solid state nanofibers based on self-assemblies: from cleaving from self-assemblies to multilevel hierarchical constructs. Faraday Discussions, 2009, 143, 95.	3.2	34
85	Reversible light-induced critical separation. Soft Matter, 2009, 5, 78-80.	2.7	47
86	Calix[4]resorcinarene–surfactant complexes: formulation, structure and potential sensor applications. Soft Matter, 2009, 5, 2746.	2.7	19
87	Aniline Oligomers – Architecture, Function and New Opportunities for Nanostructured Materials. Macromolecular Rapid Communications, 2008, 29, 280-292.	3.9	139
88	Macroscopically Aligned Ionic Selfâ€Assembled Peryleneâ€Surfactant Complexes within a Polymer Matrix. Advanced Functional Materials, 2008, 18, 1890-1897.	14.9	24
89	Fibrillar Constructs from Multilevel Hierarchical Selfâ€Assembly of Discotic and Calamitic Supramolecular Motifs. Advanced Functional Materials, 2008, 18, 2041-2047.	14.9	32
90	Langmuir and LB properties of two calix[4]resorcinarenes: Interactions with various analytes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 321, 43-46.	4.7	16

#	Article	IF	Citations
91	Hydrogen-Bonded Polymerâ^'Azobenzene Complexes: Enhanced Photoinduced Birefringence with High Temporal Stability through Interplay of Intermolecular Interactions. Chemistry of Materials, 2008, 20, 6358-6363.	6.7	111
92	Ionic self-assembled molecular receptor-based liquid crystals with tripeptide recognition capabilities. Journal of Materials Chemistry, 2008, 18, 2962.	6.7	24
93	Photoinduction of optical anisotropy in an azobenzene-containing ionic self-assembly liquid-crystalline material. Physical Review E, 2007, 75, 031703.	2.1	35
94	A Pyrrole-Containing Surfactant as a Tecton for Nanocomposite SiO2 Films. Langmuir, 2007, 23, 11273-11280.	3.5	5
95	Effect of Extraction Procedure on Measured Sugar Concentrations in Onion (Allium cepa L.) Bulbs. Journal of Agricultural and Food Chemistry, 2007, 55, 4299-4306.	5.2	71
96	DNA-analogous structures from deoxynucleophosphates and polylysine by ionic self-assembly. Soft Matter, 2006, 2, 329.	2.7	25
97	Bioinspired supramolecular liquid crystals. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 2709-2719.	3.4	64
98	Induced Supramolecular Chirality in Nanostructured Materials:  Ionic Self-Assembly of Perylene-Chiral Surfactant Complexes. Chemistry of Materials, 2006, 18, 1839-1847.	6.7	108
99	Liquid-Crystalline Materials by the Ionic Self-Assembly Route. Molecular Crystals and Liquid Crystals, 2006, 450, 55/[255]-65/[265].	0.9	11
100	A Supramolecular Approach to Optically Anisotropic Materials: Photosensitive Ionic Self-Assembly Complexes. Advanced Materials, 2006, 18, 2133-2136.	21.0	125
101	Self-Assembly and Electrical Conductivity Transitions in Conjugated Oligoaniline-Surfactant Complexes. Angewandte Chemie - International Edition, 2005, 44, 751-756.	13.8	81
102	Synthesis of Supramolecular Polymers by Ionic Self-Assembly of Oppositely Charged Dyes. Chemistry - A European Journal, 2005, 11, 1305-1311.	3.3	66
103	Highly Photoluminescent Polyoxometaloeuropate-Surfactant Complexes by Ionic Self-Assembly. Chemistry - A European Journal, 2005, 11, 1001-1009.	3.3	159
104	Highly ordered monodomain ionic self-assembled liquid-crystalline materials. Physical Review E, 2005, 71, 021701.	2.1	25
105	Synthesis and Phase Characterization of a Double-Tailed Pyrrole-Containing Surfactant:Â A Novel Tecton for the Production of Functional Nanostructured Materials. Langmuir, 2005, 21, 2704-2712.	3.5	15
106	Bis[trimethyl(tetradecyl)ammonium] 7-hydroxy-8-phenyldiazenyl-7,8-dihydronaphthalene-1,3-disulfonate 1.8-hydrate: ionic self-assembly. Acta Crystallographica Section E: Structure Reports Online, 2004, 60, o1769-o1772.	0.2	2
107	Alignment of a Perylene-Based Ionic Self-Assembly Complex in Thermotropic and Lyotropic Liquid-Crystalline Phases. Advanced Functional Materials, 2004, 14, 835-841.	14.9	77
108	Induced Liquid Crystallinity in Switchable Side-Chain Discotic Molecules. Chemistry of Materials, 2004, 16, 3867-3871.	6.7	63

#	Article	IF	CITATIONS
109	Structure–function relationship in optically and electronically active ISA materials. Synthetic Metals, 2004, 147, 63-65.	3.9	2
110	Ionic Self-Assembly: Facile Synthesis of Supramolecular Materials. Advanced Materials, 2003, 15, 673-683.	21.0	721
111	Organized Nanostructured Complexes of Inorganic Clusters and Surfactants That Exhibit Thermal Solid-State Transformations. Chemistry - A European Journal, 2003, 9, 2160-2166.	3.3	32
112	Copper–Metallomesogen Structures Obtained by Ionic Self-Assembly (ISA): Molecular Electromechanical Switching Driven by Cooperativity. Chemistry - A European Journal, 2003, 9, 3764-3771.	3.3	39
113	Solid-state nanostructure of PAMAM dendrimer–fluorosurfactant complexes and nanoparticles synthesis within the ionic subphase. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 212, 115-121.	4.7	26
114	Directed Reactions within Confined Reaction Environments:  Polyadditions in Polyelectrolyteâ^'Surfactant Complexes. Macromolecules, 2003, 36, 2862-2866.	4.8	16
115	Polymerization of the Organized Phases of Polyelectrolyteâ^'Surfactant Complexesâ€. Langmuir, 2003, 19, 6561-6565.	3.5	19
116	Combination of ionic self-assembly and hydrogen bonding as a tool for the synthesis of liquid-crystalline materials and organogelators from a simple building blockElectronic supplementary information (ESI) available: IR, NMR, DSC and TGA data of the organic core and complexes. See http://www.rsc.org/suppdata/cc/b3/b303552b/. Chemical Communications, 2003, , 1958.	4.1	51
117	Perylenediimide-surfactant complexes: thermotropic liquid-crystalline materials via ionic self-assemblyElectronic supplementary information (ESI) available: 1H-NMR, IR, UV and fluorescence spectra of 1. See http://www.rsc.org/suppdata/cc/b2/b211753c/. Chemical Communications, 2003, , 894-895.	4.1	59
118	Ionic Self-Assembly of Dyeâ^'Surfactant Complexes:Â Influence of Tail Lengths and Dye Architecture on the Phase Morphology. Langmuir, 2002, 18, 5939-5945.	3.5	70
119	Facile Synthesis of Optically Functional, Highly Organized Nanostructures: Dye–Surfactant Complexes. Chemistry - A European Journal, 2002, 8, 2764.	3.3	76
120	Directed Polymerization in Mesophases of Polyelectrolyteâ^'Surfactant Complexes. Langmuir, 2001, 17, 2031-2035	3.5	14