List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5859051/publications.pdf Version: 2024-02-01

Μλελνιικι Κλωλυλ

#	Article	IF	CITATIONS
1	Measurement of plastic strain of polycrystalline material by electron backscatter diffraction. Nuclear Engineering and Design, 2005, 235, 713-725.	1.7	214
2	Quantification of plastic strain of stainless steel and nickel alloy by electron backscatter diffraction. Acta Materialia, 2006, 54, 539-548.	7.9	210
3	Measurement of local plastic strain distribution of stainless steel by electron backscatter diffraction. Materials Characterization, 2009, 60, 125-132.	4.4	137
4	Assessment of local deformation using EBSD: Quantification of accuracy of measurement and definition of local gradient. Ultramicroscopy, 2011, 111, 1189-1199.	1.9	133
5	A procedure for determining the true stress–strain curve over a large range of strains using digital image correlation and finite element analysis. Mechanics of Materials, 2011, 43, 243-253.	3.2	114
6	Assessment of local deformation using EBSD: Quantification of local damage at grain boundaries. Materials Characterization, 2012, 66, 56-67.	4.4	108
7	Characterization of microstructural damage due to low-cycle fatigue by EBSD observation. Materials Characterization, 2009, 60, 1454-1462.	4.4	91
8	Three-dimensional local stress analysis on grain boundaries in polycrystalline material. International Journal of Solids and Structures, 2007, 44, 3267-3277.	2.7	87
9	Growth evaluation of multiple interacting surface cracks. Part I: Experiments and simulation of coalesced crack. Engineering Fracture Mechanics, 2008, 75, 1336-1349.	4.3	87
10	Mean stress effect on fatigue strength of stainless steel. International Journal of Fatigue, 2015, 74, 20-29.	5.7	73
11	Influence of interaction between multiple cracks on stress corrosion crack propagation. Corrosion Science, 2002, 44, 2333-2352.	6.6	71
12	Growth evaluation of multiple interacting surface cracks. Part II: Growth evaluation of parallel cracks. Engineering Fracture Mechanics, 2008, 75, 1350-1366.	4.3	64
13	Ramberg–Osgood type stress–strain curve estimation using yield and ultimate strengths for failure assessments. International Journal of Pressure Vessels and Piping, 2016, 137, 1-12.	2.6	56
14	A Crack Growth Evaluation Method for Interacting Multiple Cracks. JSME International Journal Series A-Solid Mechanics and Material Engineering, 2003, 46, 15-23.	0.4	54
15	Growth prediction of two interacting surface cracks of dissimilar sizes. Engineering Fracture Mechanics, 2010, 77, 3120-3131.	4.3	53
16	Strain-based modeling of fatigue crack growth – An experimental approach for stainless steel. International Journal of Fatigue, 2012, 44, 131-140.	5.7	51
17	Low-cycle fatigue crack growth prediction by strain intensity factor. International Journal of Fatigue, 2015, 72, 80-89.	5.7	49
18	Crack initiation model for sensitized 304 stainless steel in high temperature water. Corrosion Science, 2006, 48, 2442-2456.	6.6	48

#	Article	IF	CITATIONS
19	A procedure for estimating Young's modulus of textured polycrystalline materials. International Journal of Solids and Structures, 2009, 46, 2642-2649.	2.7	46
20	Failure pressure of straight pipe with wall thinning under internal pressure. International Journal of Pressure Vessels and Piping, 2008, 85, 628-634.	2.6	44
21	Local Plastic Strain Measurement by EBSD. Applied Mechanics and Materials, 0, 7-8, 173-179.	0.2	43
22	Loading sequence effect on fatigue life of Type 316 stainless steel. International Journal of Fatigue, 2015, 81, 10-20.	5.7	42
23	Fatigue properties of 316 stainless steel and its failure due to internal cracks in low-cycle and extremely low-cycle fatigue regimes. International Journal of Fatigue, 2010, 32, 1081-1089.	5.7	41
24	Influence of local stress on initiation behavior of stress corrosion cracking for sensitized 304 stainless steel. Corrosion Science, 2007, 49, 3303-3324.	6.6	40
25	Influence of bulk damage on crack initiation in lowâ€cycle fatigue of 316 stainless steel. Fatigue and Fracture of Engineering Materials and Structures, 2010, 33, 94-104.	3.4	40
26	Simulation for intergranular stress corrosion cracking based on a three-dimensional polycrystalline model. Engineering Fracture Mechanics, 2009, 76, 386-401.	4.3	38
27	Thermal stress analysis for fatigue damage evaluation at a mixing tee. Nuclear Engineering and Design, 2011, 241, 2674-2687.	1.7	37
28	A study on the evolution of crack networks under thermal fatigue loading. Nuclear Engineering and Design, 2008, 238, 2147-2154.	1.7	35
29	Fatigue Damage Evaluation Using Electron Backscatter Diffraction. Materials Transactions, 2011, 52, 1168-1176.	1.2	35
30	Fracture behavior of austenitic stainless steels irradiated in PWR. Journal of Nuclear Materials, 2008, 378, 211-219.	2.7	33
31	A simulation on growth of multiple small cracks under stress corrosion. International Journal of Fracture, 2004, 130, 787-801.	2.2	32
32	Effect of reference point selection on microscopic stress measurement using EBSD. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 647, 256-264.	5.6	32
33	Environmental effect on fatigue strength of stainless steel in PWR primary water – Role of crack growth acceleration in fatigue life reduction. International Journal of Fatigue, 2013, 55, 102-111.	5.7	31
34	True stress–strain curves of cold worked stainless steel over a large range of strains. Journal of Nuclear Materials, 2014, 451, 264-275.	2.7	29
35	True stress–strain curve acquisition for irradiated stainless steel including the range exceeding necking strain. Journal of Nuclear Materials, 2015, 465, 316-325.	2.7	29
36	An investigation of thermal stress characteristics by wall temperature measurements at a mixing tee. Nuclear Engineering and Design, 2016, 298, 109-120.	1.7	28

#	Article	IF	CITATIONS
37	A Smoothing Filter for Misorientation Mapping Obtained by EBSD. Materials Transactions, 2010, 51, 1516-1520.	1.2	25
38	Reference stress method for evaluation of failure assessment curve of cracked pipes in nuclear power plants. International Journal of Pressure Vessels and Piping, 2010, 87, 66-73.	2.6	25
39	Assessment of thermal fatigue damage caused by local fluid temperature fluctuation (part I:) Tj ETQq1 1 0.784314 Engineering and Design, 2014, 268, 121-138.	4 rgBT /Ον 1.7	erlock 10 Tf 25
40	Stress–strain curve estimation procedures for stainless steels based on yield and ultimate strengths. Engineering Fracture Mechanics, 2014, 127, 194-210.	4.3	25
41	Round robin crystal orientation measurement using EBSD for damage assessment. Mechanical Engineering Journal, 2016, 3, 16-00077-16-00077.	0.4	25
42	Correlation between Microstructural Scale Plastic Strain and Misorientation. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2010, 74, 467-474.	0.4	24
43	Stress intensity factors of microstructurally small crack. International Journal of Fracture, 2003, 124, 201-213.	2.2	23
44	J-Integral Solutions for Surface Crack Inside Pipe under Bending Load. Journal of Solid Mechanics and Materials Engineering, 2009, 3, 1115-1126.	0.5	23
45	Influence of grain boundaries on short crack growth behaviour of IGSCC. Fatigue and Fracture of Engineering Materials and Structures, 2004, 27, 513-521.	3.4	20
46	Damage Assessment of Low-Cycle Fatigue by Crack Growth Prediction (Development of Growth) Tj ETQq0 0 0 rgB Society of Mechanical Engineers, Part A, 2012, 78, 1518-1533.	T /Overloc 0.2	20 ck 10 Tf 50
47	Stress Intensity Factors of Interacting Parallel Surface Cracks Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2002, 68, 1112-1119.	0.2	18
48	Fatigue Life Prediction of Stainless Steel under Variable Loading (Damage Factors Determining Fatigue) Tj ETQq0 (Japan, 2011, 60, 871-878.) 0 rgBT /0 0.2	Overlock 10 18
49	Computational crack propagation analysis with consideration of weld residual stresses. Engineering Fracture Mechanics, 2017, 182, 708-731.	4.3	18
50	Normalizing the influence of flaw length on failure pressure of straight pipe with wall-thinning. Nuclear Engineering and Design, 2008, 238, 8-15.	1.7	16
51	A stress-based criterion for ductile crack initiation of pre-strained carbon steel. Engineering Fracture Mechanics, 2012, 96, 461-479.	4.3	16
52	Stress Intensity Factors of Surface Crack with Undulated Front. JSME International Journal Series A-Solid Mechanics and Material Engineering, 2006, 49, 529-535.	0.4	15
53	Influence of the Interaction on Stress Intensity Factor of Semielliptical Surface Cracks. Journal of Pressure Vessel Technology, Transactions of the ASME, 2008, 130, .	0.6	14
54	Effect of Plastic Strain on Fracture strength of Cracked Components. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2010, 76, 205-214.	0.2	14

#	Article	IF	CITATIONS
55	Fatigue crack tolerance design for stainless steel by crack growth analysis. Engineering Fracture Mechanics, 2017, 177, 14-32.	4.3	14
56	J-Integral Solutions for Surface Cracks Inside Pipes under Internal Pressure. Journal of Solid Mechanics and Materials Engineering, 2012, 6, 871-885.	0.5	13
57	Multiple Cracks Initiation and Propagation Behavior of Stainless Steel in High Temperature Water Environment. Zairyo To Kankyo/ Corrosion Engineering, 2001, 50, 57-64.	0.2	11
58	Monitoring of inside surface crack growth by strain measurement of the outside surface: A feasibility study. Nuclear Engineering and Design, 2011, 241, 1-11.	1.7	11
59	Damage Assessment of Low-Cycle Fatigue by Crack Growth Prediction (Fatigue Life under Cyclic) Tj ETQq1 1 0.74 Engineers, Part A, 2013, 79, 1530-1544.	84314 rgE 0.2	BT /Overlock 11
60	Assessment of thermal fatigue damage caused by local fluid temperature fluctuation (part II: crack) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
61	Thermal fatigue damage assessment at mixing tees (elastic-plastic deformation effect on stress and) Tj ETQq1 1	0.784314 1.7	rgBT /Overlo
62	Evaluation of equi-biaxial fatigue of stainless steel by the pressurized disc fatigue test. International Journal of Fatigue, 2014, 61, 107-115.	5.7	10
63	Influence of strain range on fatigue life reduction of stainless steel in <scp>PWR</scp> primary water. Fatigue and Fracture of Engineering Materials and Structures, 2017, 40, 2194-2203.	3.4	10
64	Failure assessment curve for austenitic stainless steel pipes of nuclear power plants. Engineering Fracture Mechanics, 2020, 238, 107283.	4.3	10
65	Damage due to Low-Cycle Fatigue of Type 316 Stainless Steel : Fatigue Life under Variable Loading and Influence of Internal Cracks. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2010, 76, 1048-1058.	0.2	9
66	Effect of Mean Stress on Fatigue Strength of Type 316 Stainless Steel. Zairyo/Journal of the Society of Materials Science, Japan, 2012, 61, 635-641.	0.2	9
67	A Flaw Tolerance Concept for Plant Maintenance Using Virtual Fatigue Crack Growth Curve. , 2013, , .		9
68	Influence of mean stress on fatigue strength of stainless steel. Transactions of the JSME (in Japanese), 2014, 80, SMM0037-SMM0037.	0.2	9
69	Measurement of Plastic Strain Distribution by Electron Backscatter Diffraction. Zairyo/Journal of the Society of Materials Science, Japan, 2009, 58, 568-574.	0.2	9
70	Flaw Proximity Rules for Parallel Surface Cracks Based on Elastic, Elastic-Plastic Fracture Mechanics and Limit Load Analyses. , 2006, , 325.		8
71	EBSDāĸā,^ā,<伎ā,µā,&,¯āƒ«ç–²åŠ´æå,٠ā®è¦³å¯Ÿï¼^SUS316鋼āŠā,^ã³STS410鋼ã®å¾®è¦–組織的å‱åŒ- Mechanical Engineers, Part A, 2011, 77, 154-169.	-). Nil 0.2	hoŋ Kikai Gal
72	Estimation of elastic–plastic fracture toughness by numerical simulation based on a stress-based criterion for ductile crack initiation. International Journal of Pressure Vessels and Piping, 2014, 117-118, 2-8.	2.6	8

#	Article	IF	CITATIONS
73	A J-integral estimation procedure for Swift-type stress–strain curves. Engineering Fracture Mechanics, 2014, 127, 31-45.	4.3	8
74	Development of disc bending fatigue test technique for equi-biaxial loading. International Journal of Fatigue, 2016, 82, 561-571.	5.7	8
75	Elastic-plastic fracture resistance of carbon steel for cyclic load (prediction of J-R curve assuming) Tj ETQq1 1 0.7	784314 rgl 4.3	3T /Overlock
76	A round robin EBSD measurement for quantitative assessment of small plastic strain. Materials Characterization, 2020, 170, 110662.	4.4	8
77	A Criterion for Combination Rule in Flaw Assessment of Parallel Surface Cracks. Journal of Pressure Vessel Technology, Transactions of the ASME, 2011, 133, .	0.6	7
78	Monitoring of inside surface crack growth by strain measurements of the outside surface: Application of multiple strain measurements technique to fatigue crack growth. Nuclear Engineering and Design, 2013, 256, 202-213.	1.7	7
79	Elastic-plastic failure assessment of cold worked stainless steel pipes. International Journal of Pressure Vessels and Piping, 2015, 131, 45-51.	2.6	7
80	Estimation of Short Crack Growth Rate on PWSCC of Millannealed Alloy 600. Zairyo To Kankyo/ Corrosion Engineering, 2000, 49, 159-165.	0.2	6
81	Influence of the Interaction on Stress Intensity Factor of Semi-Elliptical Surface Cracks. , 2005, , 273.		6
82	Effect of Plastic Strain on Elastic-Plastic Fracture Toughness of SM490 Carbon Steel. Zairyo/Journal of the Society of Materials Science, Japan, 2010, 59, 800-807.	0.2	6
83	Evaluation of Coalescence Criteria for Parallel Cracks. , 2002, , 181.		5
84	An application of FEM in the determination of tensile properties for work-hardened carbon steel by means of small punch test. Results in Materials, 2020, 8, 100142.	1.8	5
85	Crack Growth Prediction Method Considering Interaction between Multiple Cracks (Growth of) Tj ETQq1 1 0.78 Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2011, 77, 552-563.	4314 rgBT 0.2	/Overlock 10 4
86	A Combination Rule for Circumferential Surface Cracks on Pipe Under Tension Based on Limit Load Analysis. Journal of Pressure Vessel Technology, Transactions of the ASME, 2011, 133, .	0.6	4
87	Damage Measurement of Structural Material by Electron Backscatter Diffraction (Quantification of) Tj ETQq1 1 Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2012, 78, 65-80.	0.784314 0.2	rgBT /Overlo 4
88	Evaluation of Microstructural Characteristics in Low-Cycle Fatigued Austenitic Stainless Steel Using X-Ray Line Profile Analysis. Materials Science Forum, 2018, 941, 376-381.	0.3	4
89	Penetration flow into a branch pipe causing thermal fatigue at a mixing tee. Nuclear Engineering and Design, 2020, 360, 110496.	1.7	4
90	Numerical prediction of notch bluntness effect on fracture resistance of SM490A carbon steel. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 660-671.	3.4	4

#	Article	IF	CITATIONS
91	Development of Pressurized Disc Type Fatigue Testing System for Equi-Biaxial Fatigue. Zairyo/Journal of the Society of Materials Science, Japan, 2014, 63, 582-588.	0.2	4
92	An Acceleration Test for Stress Corrosion Cracking using Humped Specimen. Zairyo To Kankyo/ Corrosion Engineering, 2003, 52, 554-560.	0.2	3
93	Finite Element Alternating Method for Interacting Surface Cracks. Solid State Phenomena, 2007, 120, 147-153.	0.3	3
94	Identification of Inhomogeneous Material Strength near Weld Joint by Three-Dimensional Digital Image Correlation Technique. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2013, 79, 1517-1529.	0.2	3
95	Structural integrity of stainless steel components exposed to neutron irradiation (Change in failure) Tj ETQq1 1 0. 80, SMM0252-SMM0252.	784314 rg 0.2	gBT /Overloc 3
96	Fatigue assessment for seismic loads considering material degradation due to stress corrosion cracking. Nuclear Engineering and Design, 2017, 322, 256-265.	1.7	3
97	Round Robin Test Using EBSD for Creep Damage Evaluation. Zairyo/Journal of the Society of Materials Science, Japan, 2017, 66, 130-137.	0.2	3
98	Development of small bulge fatigue testing technique using small diskâ€ŧype specimen. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 444-456.	3.4	3
99	Environmental effect of PWR primary water on fatigue life of stainless steel (influence of loading) Tj ETQq1 1 0.78 43, 2571-2581.	4314 rgBT 3.4	7 /Overlock 3
100	J-integral estimation by reference plastic slope method for poly-linear stress-strain curves. International Journal of Pressure Vessels and Piping, 2021, 191, 104366.	2.6	3
101	Mean Stress Effect on Fatigue Properties of Type 316 Stainless Steel in Pressurized Water Reactors Primary Water Environment. Journal of Pressure Vessel Technology, Transactions of the ASME, 2019, 141, .	0.6	3
102	Crack Growth Under Thermal Fatigue Loading (Effect of Stress Gradient and Relaxation). , 2009, , .		2
103	Angular Distribution of Slip Steps by Three-Dimensional Polycrystalline Model for Stainless Steel. Journal of Nuclear Science and Technology, 2009, 46, 901-906.	1.3	2
104	Growth Monitoring of Internal Surface Crack by Strain Measurement of External Surface (Part I:) Tj ETQq0 0 0 rgB Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2011, 77, 2001-2011.	T /Overlocl 0.2	k 10 Tf 50 2 2
105	A Plastic Collapse Assessment Procedure for Multiple Cracks Under Internal Pressure. , 2011, , .		2
106	Crack Growth Under High-Cycle Thermal Fatigue Loading: Effects of Stress Gradient and Relaxation in a Crack Network. Journal of Pressure Vessel Technology, Transactions of the ASME, 2011, 133, .	0.6	2
107	Crack Growth Prediction Method Considering Interaction between Multiple Cracks (Assessment) Tj ETQq1 1 0.78 Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2013, 79, 1382-1395.	4314 rgBT 0.2	/Overlock 1 2
108	Procedures for obtaining stress-strain curve of stainless steels including post-necking strain. Transactions of the JSME (in Japanese), 2014, 80, SMM0297-SMM0297.	0.2	2

#	Article	IF	CITATIONS
109	Flaw Tolerance Assessment for Low-Cycle Fatigue of Stainless Steel. , 2015, , .		2
110	Variations of fracture toughness and stressï¼strain curve of cold worked stainless steel and their influence on failure strength of cracked pipe. Mechanical Engineering Journal, 2016, 3, 16-00155-16-00155.	0.4	2
111	Flaw Tolerance Assessment for Low-Cycle Fatigue of Stainless Steel. Journal of Pressure Vessel Technology, Transactions of the ASME, 2017, 139, .	0.6	2
112	Heat transfer coefficient suitable for thermal fatigue assessment at a T-junction. Nuclear Engineering and Design, 2020, 370, 110916.	1.7	2
113	Influence of Mean Strain on Fatigue Life of Stainless Steel in Pressurized Water Reactor Water Environment. Journal of Pressure Vessel Technology, Transactions of the ASME, 2021, 143, .	0.6	2
114	Measurement of Plastic Strain Induced by Seismic Loading Using EBSD and Indentation Test. Transactions of the Atomic Energy Society of Japan, 2010, 9, 166-173.	0.3	2
115	Short Crack Behavior on PWSCC of Mill Annealed Alloy 600. Zairyo To Kankyo/ Corrosion Engineering, 1999, 48, 790-795.	0.2	1
116	Influence of Crystal Grain on Stress Intensity Factor of Microstructurally Small Cracks. Journal of Solid Mechanics and Materials Engineering, 2007, 1, 827-841.	0.5	1
117	Growth Behavior of Two Interacting Surface Cracks of Dissimilar Size (Comparison for Tensile and) Tj ETQq1 1 0.	784314 rg	gBŢ /Overlo <mark>ck</mark>
118	Coalescence Criteria of Interacting Axial Cracks for Failure Assessments. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2011, 77, 1814-1827.	0.2	1
119	Elastic-Plastic Fracture Mechanics Analysis of Cast Stainless Steel Pipes (Comparison of Z-Factor,) Tj ETQq1 1 0.7	84314 rgl	BT_1Overlock
120	Fatigue Crack Initiation and Growth Observation for 316 Stainless Steel Subjected to Equi-Biaxial Cyclic Loading. , 2015, , .		1
121	Load carrying capacity assessment of cracked components by elastic-plastic finite element analysis (Investigation of load carrying capacity assessment procedures for stainless steel plates and pipes). Transactions of the JSME (in Japanese), 2016, 82, 15-00677-15-00677.	0.2	1
122	Z-factor equations for elastic-plastic fracture mechanics analysis prescribed in the JSME rules on fitness-for-service for nuclear power plants. Transactions of the JSME (in Japanese), 2016, 82, 16-00263-16-00263.	0.2	1
123	Mean Stress Effect on Fatigue Properties of Type 316 Stainless Steel: Part I — In High-Temperature Air Environment. , 2017, , .		1
124	Mean Stress Effect on Fatigue Properties of Type 316 Stainless Steel: Part II — In PWR Primary Water Environment. , 2017, , .		1
125	Evolutions of Nonlinear Acoustics and Microstructure Induced by Plastic Strain in a Low Carbon Steel. Zairyo/Journal of the Society of Materials Science, Japan, 2019, 68, 121-128.	0.2	1
126	Proposal of fatigue assessment method for piping under seismic loading (About the use of effective) Tj ETQq0 0	0 rgBT /O\ 0.2	verlock 10 Tf

126

8

21-00025-21-00025.

#	Article	IF	CITATIONS
127	Fatigue Life Assessment for Variable Strain in a Mixing Tee by Use of Effective Strain Range. Journal of Pressure Vessel Technology, Transactions of the ASME, 2021, , .	0.6	1
128	Effect of Plastic Strain on Elastic-Plastic Fracture Toughness of SM490 Carbon Steel (Assessment by) Tj ETQq0 0 Science, Japan, 2012, 61, 932-939.	0 rgBT /O [.] 0.2	verlock 10 Tf 1
129	A Flaw Proximity Rule for Circumferential Surface Cracks on Pipe Under Tensile Loading Based on Limit Load Analysis. , 2008, , .		0
130	A Flaw Proximity Rule for Interacting Surface Cracks Based on Elastic-Plastic Fracture Analysis. , 2009, , .		0
131	Damage Tolerance Design for Thermal Fatigue Loading : Crack Growth Behavior under Thermal Fatigue Loading(<special issue="">The 14th National Symposium on Power and Energy System). 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2010, 76. 425-427.</special>	0.2	0
132	Measurement of Crystal Grain Size of Austenitic Stainless Steels under Low-Cycle Fatigue by EBSD Techniques. Key Engineering Materials, 0, 452-453, 809-812.	0.4	0
133	Plastic Strain Measurement by EBSD. Journal of Solid Mechanics and Materials Engineering, 2012, 6, 493-503.	0.5	0
134	Influence of PWR Environment on Fatigue Crack Initiation and Growth of Type 316 Stainless Steel. , 2015, , .		0
135	Environmental Effect on Fatigue Crack Initiation and Growth of Stainless Steel for Flaw Tolerance Assessment. , 2016, , .		0
136	Optimization of inspection interval by applying performance based maintenance concept (Assessment) Tj ETQqC	0 0 rgBT 0.2	/Overlock 10 0
137	An axial crack growth prediction procedure initiated at butt welded joint (Growth prediction for) Tj ETQq1 1 0.78 JSME (in Japanese), 2018, 84, 17-00457-17-00457.	4314 rgB ⁻ 0.2	T /Overlock 1 0
138	Numerical simulation of thermal stress fluctuation at a mixing tee for thermal fatigue problems. Mechanical Engineering Journal, 2018, 5, 18-00272-18-00272.	0.4	0
139	Development of Fatigue Crack Growth Prediction Model in Reactor Coolant Environment. Journal of Pressure Vessel Technology, Transactions of the ASME, 2018, 140, .	0.6	Ο
140	Fatigue life prediction model according to crack growth concept (Fatigue life corrections for) Tj ETQq0 0 0 rgBT , 2021, 87, 21-00196-21-00196.	Overlock 0.2	10 Tf 50 227 0
141	The Correlation between Non-Linear Acoustic and Magnetic Properties and Local Misorientation Induced by Plastic Strain in Metastable Austenitic Stainless Steel. Zairyo/Journal of the Society of Materials Science, Japan, 2021, 70, 191-198.	0.2	0
142	Low Cycle Fatigue Crack Growth Prediction for Stainless Steel by Strain Intensify Factor. Zairyo/Journal of the Society of Materials Science, Japan, 2015, 64, 902-909.	0.2	0
143	Stress-strain Curve Estimation Procedure for Large Strain Including Post-necking Strain. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2019, 88, 621-623.	0.1	0
144	Causes of evolution and influence on failure strength of thermal crazing. Transactions of the JSME (in Japanese), 2021, 87, .	0.2	0

#	Article	IF	CITATIONS
145	Application of finite element analyses to limit load assessment of JSME fitness-for-service code. Transactions of the JSME (in Japanese), 2021, 87, 21-00149-21-00149.	0.2	Ο
146	Application of SBF Test to Fatigue Damage Assessment of Type 316 Steel. Materials Performance and Characterization, 2022, 11, 451-463.	0.3	0