Beema Shafreen Rajamohamed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5858871/publications.pdf Version: 2024-02-01

		394421	434195
31	3,752	19	31
papers	citations	h-index	g-index
32	32	32	6628
all docs	docs citations	times ranked	citing authors

BEEMA SHAFREEN

#	Article	IF	CITATIONS
1	Facile and Eco-Friendly Fabrication of Silver Nanoparticles Using Nyctanthes arbor-tristis Leaf Extract to Study Antibiofilm and Anticancer Properties against Candida albicans. Advances in Materials Science and Engineering, 2022, 2022, 1-10.	1.8	1
2	Ethnomedicines of Indian origin for combating COVID-19 infection by hampering the viral replication: using structure-based drug discovery approach. Journal of Biomolecular Structure and Dynamics, 2021, 39, 4594-4609.	3.5	69
3	In Vitro and In Silico Interaction Studies with Red Wine Polyphenols against Different Proteins from Human Serum. Molecules, 2021, 26, 6686.	3.8	9
4	Streptomyces diastaticus isolated from the marine crustacean Portunus sanguinolentus with potential antibiofilm activity against Candida albicans. Archives of Microbiology, 2020, 202, 1977-1984.	2.2	4
5	Antioxidant, quenching, electrophoretic, antifungal and structural properties of proteins and their abilities to control the quality of Amaranthus industrial products. Food Control, 2020, 115, 107276.	5.5	1
6	Binding and potential antibiofilm activities of Amaranthus proteins against Candida albicans. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110479.	5.0	4
7	Modulatory effects of Amukkara Choornam on Candida albicans biofilm: in vitro and in vivo study. Molecular Biology Reports, 2019, 46, 2961-2969.	2.3	5
8	Assessment of antioxidant, anticholinesterase and antiamyloidogenic effect of Terminalia chebula, Terminalia arjuna and its bioactive constituent 7-Methyl gallic acid – An in vitro and in silico studies. Journal of Molecular Liquids, 2018, 257, 69-81.	4.9	25
9	Human serum interactions with phenolic and aroma substances of Kaffir (Citrus hystrix) and Key lime (Citrus aurantifolia) juices. Journal of Luminescence, 2018, 201, 115-122.	3.1	15
10	Grewia tiliaefolia and its active compound vitexin regulate the expression of glutamate transporters and protect Neuro-2a cells from glutamate toxicity. Life Sciences, 2018, 203, 233-241.	4.3	24
11	Quality of limes juices based on the aroma and antioxidant properties. Food Control, 2018, 89, 270-279.	5.5	24
12	An in vitro and in silico identification of antibiofilm small molecules from seawater metaclone SWMC166 against Vibrio cholerae O1. Molecular and Cellular Probes, 2018, 39, 14-24.	2.1	5
13	Inhibitory Effect of Biosynthesized Silver Nanoparticles from Extract of Nitzschia palea Against Curli-Mediated Biofilm of Escherichia coli. Applied Biochemistry and Biotechnology, 2017, 183, 1351-1361.	2.9	32
14	Interaction of human serum albumin with volatiles and polyphenols from some berries. Food Hydrocolloids, 2017, 72, 297-303.	10.7	19
15	Cholinesterase inhibitory, anti-amyloidogenic and neuroprotective effect of the medicinal plant <i>Grewia tiliaefolia</i> – An <i>in vitro</i> and <i>in silico</i> study. Pharmaceutical Biology, 2017, 55, 381-393.	2.9	36
16	Neuroprotective effect of the marine macroalga <i>Gelidiella acerosa</i> : identification of active compounds through bioactivity-guided fractionation. Pharmaceutical Biology, 2016, 54, 2073-2081.	2.9	30
17	An <i>in silico</i> , <i>in vitro</i> and <i>in vivo</i> investigation of indole-3-carboxaldehyde identified from the seawater bacterium <i>Marinomonas</i> sp. as an anti-biofilm agent against <i>Vibrio cholerae</i> O1. Biofouling, 2016, 32, 439-450.	2.2	21
18	Essential oils from commercial and wild Patchouli modulate Group A Streptococcal biofilms. Industrial Crops and Products, 2015, 69, 180-186.	5.2	21

BEEMA SHAFREEN

#	Article	IF	CITATIONS
19	Usnic acid inhibits biofilm formation and virulent morphological traits of Candida albicans. Microbiological Research, 2015, 179, 20-28.	5.3	92
20	Usnic acid, a lichen secondary metabolite inhibits Group A Streptococcus biofilms. Antonie Van Leeuwenhoek, 2015, 107, 263-272.	1.7	32
21	<i>In silico</i> and <i>in vitro</i> studies of cinnamaldehyde and their derivatives against LuxS in <i>Streptococcus pyogenes</i> : effects on biofilm and virulence genes. Journal of Molecular Recognition, 2014, 27, 106-116.	2.1	41
22	Ligand-based pharmacophore modelling and screening of DNA minor groove binders targetingStaphylococcus aureus. Journal of Molecular Recognition, 2014, 27, 429-437.	2.1	6
23	Inhibition of Candida albicans virulence factors by novel levofloxacin derivatives. Applied Microbiology and Biotechnology, 2014, 98, 6775-6785.	3.6	45
24	Molecular modeling and simulation of FabG, an enzyme involved in the fatty acid pathway of Streptococcus pyogenes. Journal of Molecular Graphics and Modelling, 2013, 45, 1-12.	2.4	12
25	Exploration of fluoroquinolone resistance in <i>Streptococcus pyogenes</i> : comparative structure analysis of wildâ€ŧype and mutant DNA gyrase. Journal of Molecular Recognition, 2013, 26, 276-285.	2.1	28
26	Biofilm formation by Streptococcus pyogenes: Modulation of exopolysaccharide by fluoroquinolone derivatives. Journal of Bioscience and Bioengineering, 2011, 112, 345-350.	2.2	31
27	Synthesis and in vitro antimicrobial evaluation of novel fluoroquinolone derivatives. European Journal of Medicinal Chemistry, 2010, 45, 6101-6105.	5.5	38
28	Human Protein Reference Database2009 update. Nucleic Acids Research, 2009, 37, D767-D772.	14.5	2,882
29	Human Proteinpedia: a unified discovery resource for proteomics research. Nucleic Acids Research, 2009, 37, D773-D781.	14.5	75
30	Protective effect of silymarin on erythrocyte haemolysate against benzo(a)pyrene and exogenous reactive oxygen species (H2O2) induced oxidative stress. Chemosphere, 2007, 68, 1511-1518.	8.2	60
31	Silymarin Protection against Major Reactive Oxygen Species Released by Environmental Toxins: Exogenous H2O2Exposure in Erythrocytes. Basic and Clinical Pharmacology and Toxicology, 2007, 100, 414-419.	2.5	65