Lotje De Witte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5858547/publications.pdf Version: 2024-02-01

LOTIE DE WITTE

#	Article	IF	CITATIONS
1	Contribution of Age, Brain Region, Mood Disorder Pathology, and Interindividual Factors on the Methylome of Human Microglia. Biological Psychiatry, 2022, 91, 572-581.	1.3	12
2	SARSâ€CoVâ€2 during pregnancy and associated outcomes: Results from an ongoing prospective cohort. Paediatric and Perinatal Epidemiology, 2022, 36, 466-475.	1.7	17
3	Transcriptomic and functional analysis of Aβ1-42 oligomer-stimulated human monocyte-derived microglia-like cells. Brain, Behavior, and Immunity, 2022, 100, 219-230.	4.1	4
4	Genetic analysis of the human microglial transcriptome across brain regions, aging and disease pathologies. Nature Genetics, 2022, 54, 4-17.	21.4	102
5	Human microglial models to study HIV infection and neuropathogenesis: a literature overview and comparative analyses. Journal of NeuroVirology, 2022, 28, 64-91.	2.1	15
6	New insights into the genetic etiology of Alzheimer's disease and related dementias. Nature Genetics, 2022, 54, 412-436.	21.4	700
7	Characterization of HIV-1 Infection in Microglia-Containing Human Cerebral Organoids. Viruses, 2022, 14, 829.	3.3	24
8	The influence of structural racism, pandemic stress, and SARS-CoV-2 infection during pregnancy with adverse birth outcomes. American Journal of Obstetrics & Gynecology MFM, 2022, 4, 100649.	2.6	7
9	Exposure to the Amino Acids Histidine, Lysine, and Threonine Reduces mTOR Activity and Affects Neurodevelopment in a Human Cerebral Organoid Model. Nutrients, 2022, 14, 2175.	4.1	2
10	Distinct non-inflammatory signature of microglia in post-mortem brain tissue of patients with major depressive disorder. Molecular Psychiatry, 2021, 26, 3336-3349.	7.9	40
11	Fully defined human pluripotent stem cell-derived microglia and tri-culture system model C3 production in Alzheimer's disease. Nature Neuroscience, 2021, 24, 343-354.	14.8	118
12	Simvastatin Augmentation for Patients With Early-Phase Schizophrenia-Spectrum Disorders: A Double-Blind, Randomized Placebo-Controlled Trial. Schizophrenia Bulletin, 2021, 47, 1108-1115.	4.3	24
13	The effect of prednisolone on symptom severity in schizophrenia: A placebo-controlled, randomized controlled trial. Schizophrenia Research, 2021, 230, 79-86.	2.0	7
14	DNA methylation differences in cortical grey and white matter in schizophrenia. Epigenomics, 2021, 13, 1157-1169.	2.1	5
15	Dysregulation of mitochondrial and proteolysosomal genes in Parkinson's disease myeloid cells. Nature Aging, 2021, 1, 850-863.	11.6	16
16	A loss of mature microglial markers without immune activation in schizophrenia. Glia, 2021, 69, 1251-1267.	4.9	43
17	Atlas of genetic effects in human microglia transcriptome across brain regions, aging and disease pathologies. Alzheimer's and Dementia, 2021, 17, e050942.	0.8	4
18	Cerebrospinal fluid abnormalities in first- and multi-episode schizophrenia-spectrum disorders: impact of clinical and demographical variables. Translational Psychiatry, 2021, 11, 621.	4.8	5

LOTJE DE WITTE

#	Article	IF	CITATIONS
19	Synapse Pathology in Schizophrenia: A Meta-analysis of Postsynaptic Elements in Postmortem Brain Studies. Schizophrenia Bulletin, 2020, 46, 374-386.	4.3	77
20	The association between schizophrenia and the immune system: Review of the evidence from unbiased â€~omic-studies'. Schizophrenia Research, 2020, 217, 114-123.	2.0	30
21	Microglial activation in schizophrenia: Is translocator 18†kDa protein (TSPO) the right marker?. Schizophrenia Research, 2020, 215, 167-172.	2.0	30
22	Increased number of T-lymphocytes in post-mortem brain tissue of patients with schizophrenia Schizophrenia Research, 2020, 216, 526-528.	2.0	10
23	A characterization of the molecular phenotype and inflammatory response of schizophrenia patient-derived microglia-like cells. Brain, Behavior, and Immunity, 2020, 90, 196-207.	4.1	37
24	Single-cell mass cytometry of microglia in major depressive disorder reveals a non-inflammatory phenotype with increased homeostatic marker expression. Translational Psychiatry, 2020, 10, 310.	4.8	56
25	Cannabinoids and psychotic symptoms: A potential role for a genetic variant in the P2X purinoceptor 7 (P2RX7) gene. Brain, Behavior, and Immunity, 2020, 88, 573-581.	4.1	14
26	B-cells and schizophrenia: A promising link or a finding lost in translation?. Brain, Behavior, and Immunity, 2019, 81, 52-62.	4.1	14
27	Childhood Adversity Is Associated With Increased KITLG Methylation in Healthy Individuals but Not in Bipolar Disorder Patients. Frontiers in Psychiatry, 2019, 9, 743.	2.6	10
28	Microglia in post-mortem brain tissue of patients with bipolar disorder are not immune activated. Translational Psychiatry, 2019, 9, 153.	4.8	45
29	Neurons and glial cells in bipolar disorder: A systematic review of postmortem brain studies of cell number and size. Neuroscience and Biobehavioral Reviews, 2019, 103, 150-162.	6.1	15
30	DNA methylation changes related to nutritional deprivation: a genome-wide analysis of population and in vitro data. Clinical Epigenetics, 2019, 11, 80.	4.1	14
31	Liprin alfa 2 gene expression is increased by cannabis use and associated with neuropsychological function. European Neuropsychopharmacology, 2019, 29, 643-652.	0.7	3
32	The association between antibodies to neurotropic pathogens and bipolar disorder. Translational Psychiatry, 2019, 9, 311.	4.8	10
33	Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry. Nature Neuroscience, 2019, 22, 78-90.	14.8	288
34	Virus discovery analyses on post-mortem brain tissue and cerebrospinal fluid of schizophrenia patients. Schizophrenia Research, 2018, 197, 605-606.	2.0	6
35	Are infectious agents involved in the pathogenesis of postpartum psychosis?. Journal of Affective Disorders, 2018, 229, 141-144.	4.1	3
36	No neuronal autoantibodies detected in plasma of patients with a bipolar I disorder. Psychiatry Research, 2018, 259, 460-462.	3.3	2

LOTJE DE WITTE

#	Article	IF	CITATIONS
37	Microglia innately develop within cerebral organoids. Nature Communications, 2018, 9, 4167.	12.8	405
38	Clinical consequences of extensive routine laboratory investigations in patients with a recent onset psychotic disorder. Schizophrenia Research, 2017, 189, 210-212.	2.0	2
39	Telomere quantification in frontal and temporal brain tissue of patients with schizophrenia. Journal of Psychiatric Research, 2017, 95, 231-234.	3.1	7
40	In vivo (R)-[11C]PK11195 PET imaging of 18kDa translocator protein in recent onset psychosis. NPJ Schizophrenia, 2016, 2, 16031.	3.6	63
41	The association between antibodies to neurotropic pathogens and schizophrenia: a case-control study. NPJ Schizophrenia, 2015, 1, 15041.	3.6	29
42	Absence of <i>N</i> -Methyl- _{<scp>D</scp>} -Aspartate Receptor IgG Autoantibodies in Schizophrenia. JAMA Psychiatry, 2015, 72, 731.	11.0	58