Alexander Nikolaevich Gorban

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/585825/alexander-nikolaevich-gorban-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

190 3,795 34 53 h-index g-index citations papers 208 4,622 5.96 3.4 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
190	Modeling Progression of Single Cell Populations Through the Cell Cycle as a Sequence of Switches <i>Frontiers in Molecular Biosciences</i> , 2021 , 8, 793912	5.6	O
189	Social stress drives the multi-wave dynamics of COVID-19 outbreaks. <i>Scientific Reports</i> , 2021 , 11, 22497	4.9	2
188	It is useful to analyze correlation graphs: Reply to comments on "Dynamic and thermodynamic models of adaptation". <i>Physics of Life Reviews</i> , 2021 , 40, 15-15	2.1	О
187	Scikit-Dimension: A Python Package for Intrinsic Dimension Estimation. <i>Entropy</i> , 2021 , 23,	2.8	5
186	Modeling Working Memory in a Spiking Neuron Network Accompanied by Astrocytes. <i>Frontiers in Cellular Neuroscience</i> , 2021 , 15, 631485	6.1	9
185	General stochastic separation theorems with optimal bounds. <i>Neural Networks</i> , 2021 , 138, 33-56	9.1	4
184	What can the randomness of missing values tell you about clinical practice in large data sets of children's vital signs?. <i>Pediatric Research</i> , 2021 , 89, 16-21	3.2	2
183	Transient concentration extremum and conservatively perturbed equilibrium. <i>Chemical Engineering Science</i> , 2021 , 231, 116295	4.4	3
182	. IEEE Transactions on Geoscience and Remote Sensing, 2021 , 1-15	8.1	O
181	Transition states and entangled mass action law. Results in Physics, 2021, 22, 103922	3.7	1
180	Dynamic and thermodynamic models of adaptation. <i>Physics of Life Reviews</i> , 2021 , 37, 17-64	2.1	22
179	Blessing of dimensionality at the edge and geometry of few-shot learning. <i>Information Sciences</i> , 2021 , 564, 124-143	7.7	2
178	High-Dimensional Separability for One- and Few-Shot Learning. <i>Entropy</i> , 2021 , 23,	2.8	1
177	Fractional Norms and Quasinorms Do Not Help to Overcome the Curse of Dimensionality. <i>Entropy</i> , 2020 , 22,	2.8	6
176	Automatic short answer grading and feedback using text mining methods. <i>Procedia Computer Science</i> , 2020 , 169, 726-743	1.6	13
175	High-Dimensional Brain in a High-Dimensional World: Blessing of Dimensionality. <i>Entropy</i> , 2020 , 22,	2.8	13
174	Robust and Scalable Learning of Complex Intrinsic Dataset Geometry via ElPiGraph. <i>Entropy</i> , 2020 , 22,	2.8	16

173	Astrocytes Organize Associative Memory. Studies in Computational Intelligence, 2020, 384-391	0.8	2
172	Multivariate Gaussian and Student-t process regression for multi-output prediction. <i>Neural Computing and Applications</i> , 2020 , 32, 3005-3028	4.8	20
171	Singularities of transient processes in dynamics and beyond: Comment on "Long transients in ecology: Theory and applications" by Andrew Morozov et al. <i>Physics of Life Reviews</i> , 2020 , 32, 46-49	2.1	4
170	Trajectories, bifurcations, and pseudo-time in large clinical datasets: applications to myocardial infarction and diabetes data. <i>GigaScience</i> , 2020 , 9,	7.6	7
169	On Adversarial Examples and Stealth Attacks in Artificial Intelligence Systems 2020,		6
168	Using Convolutional Neural Networks to Distinguish Different Sign Language Alphanumerics. <i>Proceedings of the International Neural Networks Society</i> , 2020 , 276-285	0.5	
167	How Deep Should be the Depth of Convolutional Neural Networks: a Backyard Dog Case Study. <i>Cognitive Computation</i> , 2020 , 12, 388-397	4.4	31
166	Do Fractional Norms and Quasinorms Help to Overcome the Curse of Dimensionality? 2019,		1
165	Independent Component Analysis for Unraveling the Complexity of Cancer Omics Datasets. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	32
164	Methods of Data Analysis 2019 , 35-59		
164	Methods of Data Analysis 2019, 35-59 Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM. <i>Nature Communications</i> , 2019, 10, 1903	17.4	97
	Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM. <i>Nature</i>	17.4	97
163	Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM. <i>Nature Communications</i> , 2019 , 10, 1903	17.4	97
163 162	Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM. <i>Nature Communications</i> , 2019 , 10, 1903 Drug Use and Personality Profiles 2019 , 5-33	17.4	97
163 162 161	Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM. <i>Nature Communications</i> , 2019 , 10, 1903 Drug Use and Personality Profiles 2019 , 5-33 Results of Data Analysis 2019 , 61-120	7.7	1
163 162 161	Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM. <i>Nature Communications</i> , 2019 , 10, 1903 Drug Use and Personality Profiles 2019 , 5-33 Results of Data Analysis 2019 , 61-120 Personality Traits and Drug Consumption 2019 , One-trial correction of legacy AI systems and stochastic separation theorems. <i>Information Sciences</i> ,		1
163162161160159	Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM. <i>Nature Communications</i> , 2019 , 10, 1903 Drug Use and Personality Profiles 2019 , 5-33 Results of Data Analysis 2019 , 61-120 Personality Traits and Drug Consumption 2019 , One-trial correction of legacy AI systems and stochastic separation theorems. <i>Information Sciences</i> , 2019 , 484, 237-254 Functional CT imaging for identification of the spatial determinants of small-airways disease in	7.7	1 6 13

155	Symphony of high-dimensional brain: Reply to comments on "The unreasonable effectiveness of small neural ensembles in high-dimensional brain". <i>Physics of Life Reviews</i> , 2019 , 29, 115-119	2.1	2
154	Basic, simple and extendable kinetic model of protein synthesis. <i>Mathematical Biosciences and Engineering</i> , 2019 , 16, 6602-6622	2.1	1
153	Fast construction of correcting ensembles for legacy Artificial Intelligence systems: Algorithms and a case study. <i>Information Sciences</i> , 2019 , 485, 230-247	7.7	7
152	Kernel Stochastic Separation Theorems and Separability Characterizations of Kernel Classifiers 2019 ,		2
151	The unreasonable effectiveness of small neural ensembles in high-dimensional brain. <i>Physics of Life Reviews</i> , 2019 , 29, 55-88	2.1	24
150	High-Dimensional Brain: A Tool for Encoding and Rapid Learning of Memories by Single Neurons. <i>Bulletin of Mathematical Biology</i> , 2019 , 81, 4856-4888	2.1	15
149	Basic model of purposeful kinesis. <i>Ecological Complexity</i> , 2018 , 33, 75-83	2.6	3
148	Model reduction in chemical dynamics: slow invariant manifolds, singular perturbations, thermodynamic estimates, and analysis of reaction graph. <i>Current Opinion in Chemical Engineering</i> , 2018 , 21, 48-59	5.4	23
147	Blessing of dimensionality: mathematical foundations of the statistical physics of data. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2018 , 376,	3	44
146	Mobility cost and degenerated diffusion in kinesis models. <i>Ecological Complexity</i> , 2018 , 36, 16-21	2.6	2
145	Correction of AI systems by linear discriminants: Probabilistic foundations. <i>Information Sciences</i> , 2018 , 466, 303-322	7.7	31
144	Fast Numerical Evaluation of Periodic Solutions for a Class of Nonlinear Systems and Its Applications for Parameter Estimation Problems. <i>Communications in Computer and Information Science</i> , 2018 , 137-151	0.3	
143	Hilbert's sixth problem: the endless road to rigour. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2018 , 376,	3	9
142	Theoretical aspects of peptide imprinting: screening of MIP (virtual) binding sites for their interactions with amino acids, di- and tripeptides. <i>Journal of the Chinese Advanced Materials Society</i> , 2018 , 6, 301-310		3
141	Exploring Automated Pottery Identification [Arch-I-Scan]. Internet Archaeology, 2018,	1	8
140	2018,		1
139	Efficiency of Shallow Cascades for Improving Deep Learning AI Systems 2018,		1
138	Data analysis with arbitrary error measures approximated by piece-wise quadratic PQSQ functions 2018 ,		2

137	Knowledge Transfer Between Artificial Intelligence Systems. Frontiers in Neurorobotics, 2018, 12, 49	3.4	12
136	Stochastic separation theorems. <i>Neural Networks</i> , 2017 , 94, 255-259	9.1	31
135	Pseudo-outcrop Visualization of Borehole Images and Core Scans. <i>Mathematical Geosciences</i> , 2017 , 49, 947-964	2.5	2
134	Beyond NavierBtokes equations: capillarity of ideal gas. <i>Contemporary Physics</i> , 2017 , 58, 70-90	3.3	10
133	The Five Factor Model of Personality and Evaluation of Drug Consumption Risk. <i>Studies in Classification, Data Analysis, and Knowledge Organization</i> , 2017 , 231-242	0.2	11
132	Piece-wise quadratic approximations of arbitrary error functions for fast and robust machine learning. <i>Neural Networks</i> , 2016 , 84, 28-38	9.1	7
131	Coupling-modulated multi-stability and coherent dynamics in directed networks of heterogeneous nonlinear oscillators with modular topology. <i>IFAC-PapersOnLine</i> , 2016 , 49, 62-67	0.7	4
130	Fluorescence-based assay as a new screening tool for toxic chemicals. <i>Scientific Reports</i> , 2016 , 6, 33922	4.9	11
129	Fast Sampling of Evolving Systems with Periodic Trajectories. <i>Mathematical Modelling of Natural Phenomena</i> , 2016 , 11, 73-88	3	2
128	Handling missing data in large healthcare dataset: A case study of unknown trauma outcomes. <i>Computers in Biology and Medicine</i> , 2016 , 75, 203-16	7	29
127	Approximation with random bases: Pro et Contra. <i>Information Sciences</i> , 2016 , 364-365, 129-145	7.7	63
126	Evolution of adaptation mechanisms: Adaptation energy, stress, and oscillating death. <i>Journal of Theoretical Biology</i> , 2016 , 405, 127-39	2.3	21
125	SOM: Stochastic initialization versus principal components. <i>Information Sciences</i> , 2016 , 364-365, 213-22	17.7	35
124	The Blessing of Dimensionality: Separation Theorems in the Thermodynamic Limit**The work is partially supported by Innovate UK, Technology Strategy Board, Knowledge Transfer Partnership grant KTP009890. <i>IFAC-PapersOnLine</i> , 2016 , 49, 64-69	0.7	15
123	Simple model of complex bursting dynamics in developing networks of neuronal cultures. <i>IFAC-PapersOnLine</i> , 2016 , 49, 68-73	0.7	1
122	Directed cycles and multi-stability of coherent dynamics in systems of coupled nonlinear oscillators. <i>IFAC-PapersOnLine</i> , 2015 , 48, 19-24	0.7	1
121	Leaders Do Not Look Back, or Do They?. Mathematical Modelling of Natural Phenomena, 2015, 10, 212-2	331	9
120	Generalized Mass Action Law and Thermodynamics of Nonlinear Markov Processes. <i>Mathematical Modelling of Natural Phenomena</i> , 2015 , 10, 16-46	3	10

119	Forward-Invariant Peeling in Chemical Dynamics: a Simple Case Study. <i>Mathematical Modelling of Natural Phenomena</i> , 2015 , 10, 126-134	3	1
118	Three Waves of Chemical Dynamics. <i>Mathematical Modelling of Natural Phenomena</i> , 2015 , 10, 1-5	3	18
117	Fast and user-friendly non-linear principal manifold learning by method of elastic maps 2015,		11
116	Is it possible to predict long-term success with k-NN? Case study of four market indices (FTSE100, DAX, HANGSENG, NASDAQ). <i>Journal of Physics: Conference Series</i> , 2014 , 490, 012082	0.3	1
115	Computational diagnosis of canine lymphoma. <i>Journal of Physics: Conference Series</i> , 2014 , 490, 012135	0.3	2
114	Detailed balance in micro- and macrokinetics and micro-distinguishability of macro-processes. <i>Results in Physics</i> , 2014 , 4, 142-147	3.7	9
113	Computational diagnosis and risk evaluation for canine lymphoma. <i>Computers in Biology and Medicine</i> , 2014 , 53, 279-90	7	8
112	General H-theorem and Entropies that Violate the Second Law. <i>Entropy</i> , 2014 , 16, 2408-2432	2.8	9
111	A statistical model of aggregate fragmentation. New Journal of Physics, 2014, 16, 013031	2.9	8
110	Multiscale principal component analysis. <i>Journal of Physics: Conference Series</i> , 2014 , 490, 012081	0.3	7
109	A random six-phase switch regulates pneumococcal virulence via global epigenetic changes. <i>Nature Communications</i> , 2014 , 5, 5055	17.4	147
108	Learning optimization for decision tree classification of non-categorical data with information gain impurity criterion 2014 ,		8
107	Enhancement of the stability of lattice Boltzmann methods by dissipation control. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2014 , 414, 285-299	3.3	20
106	Maxallent: Maximizers of all entropies and uncertainty of uncertainty. <i>Computers and Mathematics With Applications</i> , 2013 , 65, 1438-1456	2.7	12
105	Local equivalence of reversible and general Markov kinetics. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2013 , 392, 1111-1121	3.3	6
104	Thermodynamics in the limit of irreversible reactions. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2013 , 392, 1318-1335	3.3	22
103	Mathematical modeling of microRNA-mediated mechanisms of translation repression. <i>Advances in Experimental Medicine and Biology</i> , 2013 , 774, 189-224	3.6	23
102	Thermodynamic Tree: The Space of Admissible Paths. <i>SIAM Journal on Applied Dynamical Systems</i> , 2013 , 12, 246-278	2.8	5

(2010-2013)

101	Hilbert 6th Problem: exact and approximate hydrodynamic manifolds for kinetic equations. <i>Bulletin of the American Mathematical Society</i> , 2013 , 51, 187-246	1.3	29	
100	Lyapunov-like Conditions of Forward Invariance and Boundedness for a Class of Unstable Systems. <i>SIAM Journal on Control and Optimization</i> , 2013 , 51, 2306-2334	1.9	3	
99	Geometrical Complexity of Data Approximators. Lecture Notes in Computer Science, 2013, 500-509	0.9	5	
98	Reduction of dynamical biochemical reactions networks in computational biology. <i>Frontiers in Genetics</i> , 2012 , 3, 131	4.5	59	
97	Kinetic signatures of microRNA modes of action. <i>Rna</i> , 2012 , 18, 1635-55	5.8	77	
96	Allowed and forbidden regimes of entropy balance in lattice Boltzmann collisions. <i>Physical Review E</i> , 2012 , 86, 025701	2.4	5	
95	Collective dynamics: when one plus one does not make two. <i>Mathematical Medicine and Biology</i> , 2011 , 28, 85-8	1.3	1	
94	Extended detailed balance for systems with irreversible reactions. <i>Chemical Engineering Science</i> , 2011 , 66, 5388-5399	4.4	42	
93	Law of the Minimum paradoxes. Bulletin of Mathematical Biology, 2011, 73, 2013-44	2.1	42	
92	Reciprocal relations between kinetic curves. <i>Europhysics Letters</i> , 2011 , 93, 20004	1.6	33	
91	Kinetic path summation, multi-sheeted extension of master equation, and evaluation of ergodicity coefficient. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2011 , 390, 1009-1025	3.3	2	
90	The Michaelis-Menten-Stueckelberg Theorem. <i>Entropy</i> , 2011 , 13, 966-1019	2.8	41	
89	Quasichemical Models of Multicomponent Nonlinear Diffusion. <i>Mathematical Modelling of Natural Phenomena</i> , 2011 , 6, 184-262	3	45	
88	Efficient simulations of detailed combustion fields via the lattice Boltzmann method. <i>International Journal of Numerical Methods for Heat and Fluid Flow</i> , 2011 , 21, 494-517	4.5	15	
87	Self-Simplification in Darwin Systems. Lecture Notes in Computational Science and Engineering, 2011 , 311-344	0.3	2	
86	A Numerical Analyst View of the Lattice Boltzmann Method. <i>Springer Proceedings in Mathematics</i> , 2011 , 127-150		3	
85	Time Step Expansions and the Invariant Manifold Approach to Lattice Boltzmann Models. <i>Lecture Notes in Computational Science and Engineering</i> , 2011 , 169-205	0.3		
84	Principal manifolds and graphs in practice: from molecular biology to dynamical systems. International Journal of Neural Systems, 2010, 20, 219-32	6.2	84	

83	Entropy: The Markov Ordering Approach. Entropy, 2010, 12, 1145-1193	2.8	57
82	Correlations, risk and crisis: From physiology to finance. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2010 , 389, 3193-3217	3.3	63
81	Dynamical modeling of microRNA action on the protein translation process. <i>BMC Systems Biology</i> , 2010 , 4, 13	3.5	30
80	Asymptotology of chemical reaction networks. <i>Chemical Engineering Science</i> , 2010 , 65, 2310-2324	4.4	44
79	Coupling of the model reduction technique with the lattice Boltzmann method for combustion simulations. <i>Combustion and Flame</i> , 2010 , 157, 1833-1849	5.3	27
78	The Role of Thermodynamics in Model Reduction When Using Invariant Grids. <i>Communications in Computational Physics</i> , 2010 , 8, 701-734	2.4	8
77	General Laws of Adaptation to Environmental Factors: from Ecological Stress to Financial Crisis. <i>Mathematical Modelling of Natural Phenomena</i> , 2009 , 4, 1-53	3	7
76	Combustion simulation via lattice Boltzmann and reduced chemical kinetics. <i>Journal of Statistical Mechanics: Theory and Experiment</i> , 2009 , 2009, P06013	1.9	23
75	Robust simplifications of multiscale biochemical networks. <i>BMC Systems Biology</i> , 2008 , 2, 86	3.5	76
74	PCA and K-Means Decipher Genome. Lecture Notes in Computational Science and Engineering, 2008, 30	9-323	O
73	Chapter 3 Dynamic and Static Limitation in Multiscale Reaction Networks, Revisited. <i>Advances in Chemical Engineering</i> , 2008 , 103-173	0.6	32
72	Nonequilibrium entropy limiters in lattice Boltzmann methods. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2008 , 387, 385-406	3.3	36
71	Elastic Maps and Nets for Approximating Principal Manifolds and Their Application to Microarray Data Visualization. <i>Lecture Notes in Computational Science and Engineering</i> , 2008 , 96-130	0.3	9
70	Beyond The Concept of Manifolds: Principal Trees, Metro Maps, and Elastic Cubic Complexes. <i>Lecture Notes in Computational Science and Engineering</i> , 2008 , 219-237	0.3	2
69	Orderdisorder separation: Geometric revision. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2007 , 374, 85-102	3.3	13
68	Quasi-equilibrium lattice Boltzmann method. <i>European Physical Journal B</i> , 2007 , 56, 135-139	1.2	37
67	Stable simulation of fluid flow with high-Reynolds number using Ehrenfestsßteps. <i>Numerical Algorithms</i> , 2007 , 45, 389-408	2.1	1

65	Topological grammars for data approximation. <i>Applied Mathematics Letters</i> , 2007 , 20, 382-386	3.5	25
64	Stability and stabilization of the lattice Boltzmann method. <i>Physical Review E</i> , 2007 , 75, 036711	2.4	52
63	Branching Principal Components: Elastic Graphs, Topological Grammars and Metro Maps. <i>Neural Networks (IJCNN), International Joint Conference on</i> , 2007 ,		1
62	Selection Theorem for Systems with Inheritance. <i>Mathematical Modelling of Natural Phenomena</i> , 2007 , 2, 1-45	3	46
61	Dynamical robustness of biological networks with hierarchical distribution of time scales. <i>IET Systems Biology</i> , 2007 , 1, 238-46	1.4	17
60	Stabilization of the lattice Boltzmann method using the Ehrenfests' coarse-graining idea. <i>Physical Review E</i> , 2006 , 74, 037703	2.4	21
59	Quasi-equilibrium closure hierarchies for the Boltzmann equation. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2006 , 360, 325-364	3.3	19
58	Basic Types of Coarse-Graining 2006 , 117-176		6
57	Codon usage trajectories and 7-cluster structure of 143 complete bacterial genomic sequences. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2005 , 353, 365-387	3.3	11
56	Invariance correction to Grad equations: where to go beyond approximations?. <i>Continuum Mechanics and Thermodynamics</i> , 2005 , 17, 311-335	3.5	1
55	Elastic Principal Graphs and Manifolds and their Practical Applications. <i>Computing (Vienna/New York)</i> , 2005 , 75, 359-379	2.2	45
54	Invariant Manifolds for Physical and Chemical Kinetics. Lecture Notes in Physics, 2005,	0.8	108
53	Four basic symmetry types in the universal 7-cluster structure of microbial genomic sequences. <i>In Silico Biology</i> , 2005 , 5, 265-82	2	2
52	Invariant Grids: Method of Complexity Reduction in Reaction Networks. <i>Complexus</i> , 2004 , 2, 110-127		7
51	Uniqueness of thermodynamic projector and kinetic basis of molecular individualism. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2004 , 336, 391-432	3.3	18
50	Legendre integrators, post-processing and quasiequilibrium. <i>Journal of Non-Newtonian Fluid Mechanics</i> , 2004 , 120, 149-167	2.7	5
49	Constructive methods of invariant manifolds for kinetic problems. <i>Physics Reports</i> , 2004 , 396, 197-403	27.7	112
48	Invariant grids for reaction kinetics. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2004 , 333, 106-	154	62

47	Self-Organizing Approach for Automated Gene Identification. <i>Open Systems and Information Dynamics</i> , 2003 , 10, 321-333	0.4	11
46	Method of invariant manifold for chemical kinetics. <i>Chemical Engineering Science</i> , 2003 , 58, 4751-4768	4.4	181
45	Irreversibility in the short memory approximation. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2003 , 327, 399-424	3.3	14
44	Family of additive entropy functions out of thermodynamic limit. <i>Physical Review E</i> , 2003 , 67, 016104	2.4	28
43	Additive generalization of the Boltzmann entropy. <i>Physical Review E</i> , 2003 , 67, 067104	2.4	4
42	Geometry of Irreversibility 2003 , 19-43		2
41	Seven clusters in genomic triplet distributions. <i>In Silico Biology</i> , 2003 , 3, 471-82	2	7
40	Riabouchinsky flow with partially penetrable obstacle. <i>Mathematical and Computer Modelling</i> , 2002 , 35, 1365-1370		1
39	Modified Kirchhoff flow with a partially penetrable obstacle and its application to the efficiency of free flow turbines. <i>Mathematical and Computer Modelling</i> , 2002 , 35, 1371-1375		5
38	Hydrodynamics from Grad's equations: What can we learn from exact solutions?. <i>Annalen Der Physik</i> , 2002 , 11, 783-833	2.6	40
37	Duality in nonextensive statistical mechanics. <i>Physical Review E</i> , 2002 , 65, 036128	2.4	21
36	Macroscopic dynamics through coarse-graining: a solvable example. <i>Physical Review E</i> , 2002 , 65, 026116	5 2.4	8
35	The Filling of Gaps in Geophysical Time Series by Artificial Neural Networks. <i>Radiocarbon</i> , 2001 , 43, 365	-347.61	12
34	Corrections and enhancements of quasi-equilibrium states. <i>Journal of Non-Newtonian Fluid Mechanics</i> , 2001 , 96, 203-219	2.7	43
33	Limits of the Turbine Efficiency for Free Fluid Flow. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2001 , 123, 311-317	2.6	124
32	Ehrenfest's argument extended to a formalism of nonequilibrium thermodynamics. <i>Physical Review</i> E , 2001 , 63, 066124	2.4	27
31	Reduced description in the reaction kinetics. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2000 , 275, 361-379	3.3	31
30	Classification of Symbol Sequences over Their Frequency Dictionaries: Towards the Connection between Structure and Natural Taxonomy. <i>Open Systems and Information Dynamics</i> , 2000 , 7, 1-17	0.4	15

29	Two-step approximation of space-independent relaxation. <i>Transport Theory and Statistical Physics</i> , 1999 , 28, 271-296		7
28	Maximum Entropy Method in Analysis of Genetic Text and Measurement of its Information Content. <i>Open Systems and Information Dynamics</i> , 1998 , 5, 265-278	0.4	18
27	Approximation of continuous functions of several variables by an arbitrary nonlinear continuous function of one variable, linear functions, and their superpositions. <i>Applied Mathematics Letters</i> , 1998 , 11, 45-49	3.5	26
26	Maximum Entropy Principle for Lattice Kinetic Equations. <i>Physical Review Letters</i> , 1998 , 81, 6-9	7.4	129
25	Schrdinger operator in an overfull set. <i>Europhysics Letters</i> , 1998 , 42, 113-118	1.6	2
24	Dynamic correction to moment approximations. <i>Physical Review E</i> , 1998 , 57, 1668-1672	2.4	42
23	Relaxational trajectories: global approximations. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1996 , 231, 648-672	3.3	15
22	Scattering rates versus moments: Alternative Grad equations. <i>Physical Review E</i> , 1996 , 54, R3109-R311	2 2.4	20
21	Short-Wave Limit of Hydrodynamics: A Soluble Example. <i>Physical Review Letters</i> , 1996 , 77, 282-285	7.4	50
20	Technical note: On Bolid liquid limit of hydrodynamic equations. <i>Transport Theory and Statistical Physics</i> , 1995 , 24, 1419-1421		
19	General approach to constructing models of the Boltzmann equation. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1994 , 206, 401-420	3.3	47
18	Method of invariant manifolds and regularization of acoustic spectra. <i>Transport Theory and Statistical Physics</i> , 1994 , 23, 559-632		57
17	Nonarbitrary regularization of acoustic spectra. Transport Theory and Statistical Physics, 1993, 22, 121-	124	
16	Structure and approximations of the chapman-enskog expansion for the linearized grad equations. <i>Transport Theory and Statistical Physics</i> , 1992 , 21, 101-117		19
15	Jointly dissipative operators and their applications. Siberian Mathematical Journal, 1992, 33, 19-23	0.5	
14	Thermodynamic parameterization. <i>Physica A: Statistical Mechanics and Its Applications</i> , 1992 , 190, 393-	40 3 13	38
13	Simplest model of self-oscillations in association reactions. <i>Reaction Kinetics and Catalysis Letters</i> , 1985 , 27, 153-155		
12	Description of nonisothermal reactions in terms of Marcelin-de-Donder kinetics and its generalizations. <i>Reaction Kinetics and Catalysis Letters</i> , 1982 , 20, 261-265		15

11	Macroscopic clusters induced by diffusion in catalytic oxidation reactions. <i>Chemical Engineering Science</i> , 1980 , 35, 2351-2352	4.4	9
10	Dynamics of chemical reactions and nonphysical steady states. <i>Reaction Kinetics and Catalysis Letters</i> , 1980 , 15, 245-250		5
9	Marcelin-de Donder kinetics near equilibrium. Reaction Kinetics and Catalysis Letters, 1979 , 12, 19-23		12
8	Invariant sets for kinetic equations. <i>Reaction Kinetics and Catalysis Letters</i> , 1979 , 10, 187-190		8
7	Principal Graphs and Manifolds28-59		25
6	Application of the method of elastic maps in analysis of genetic texts		13
5	The general approximation theorem		9
4	Astrocytes mediate analogous memory in a multi-layer neuron strocyte network. <i>Neural Computing and Applications</i> ,1	4.8	5
3	STREAM: Single-cell Trajectories Reconstruction, Exploration And Mapping of omics data		4
2	High order orthogonal tensor networks: information capacity and reliability		1
1	Modeling Progression of Single Cell Populations Through the Cell Cycle as a Sequence of Switches		1