Haoyuan Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/585800/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flash flood susceptibility mapping using stacking ensemble machine learning models. Geocarto International, 2024, 37, 15010-15036.	1.7	9
2	Landslide Susceptibility Prediction Using Sparse Feature Extraction and Machine Learning Models Based on GIS and Remote Sensing. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	1.4	21
3	Uncertainty pattern in landslide susceptibility prediction modelling: Effects of different landslide boundaries and spatial shape expressions. Geoscience Frontiers, 2022, 13, 101317.	4.3	74
4	Regional rainfall-induced landslide hazard warning based on landslide susceptibility mapping and a critical rainfall threshold. Geomorphology, 2022, 408, 108236.	1.1	73
5	Spatial flood susceptibility prediction in Middle Ganga Plain: comparison of frequency ratio and Shannon's entropy models. Geocarto International, 2021, 36, 2085-2116.	1.7	95
6	Predicting flood susceptibility using LSTM neural networks. Journal of Hydrology, 2021, 594, 125734.	2.3	109
7	A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping. International Journal of Geographical Information Science, 2021, 35, 321-347.	2.2	124
8	A novel index to evaluate discretization methods: A case study of flood susceptibility assessment based on random forest. Geoscience Frontiers, 2021, 12, 101253.	4.3	22
9	Flood susceptibility mapping by integrating frequency ratio and index of entropy with multilayer perceptron and classification and regression tree. Journal of Environmental Management, 2021, 289, 112449.	3.8	77
10	Uncertainties of Collapse Susceptibility Prediction Based on Remote Sensing and GIS: Effects of Different Machine Learning Models. Frontiers in Earth Science, 2021, 9, .	0.8	8
11	Comparative assessment of the flash-flood potential within small mountain catchments using bivariate statistics and their novel hybrid integration with machine learning models. Science of the Total Environment, 2020, 711, 134514.	3.9	94
12	Modeling flood susceptibility using data-driven approaches of naÃ ⁻ ve Bayes tree, alternating decision tree, and random forest methods. Science of the Total Environment, 2020, 701, 134979.	3.9	280
13	Flood susceptibility mapping using convolutional neural network frameworks. Journal of Hydrology, 2020, 582, 124482.	2.3	182
14	Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping. Catena, 2020, 187, 104396.	2.2	232
15	An assessment of metaheuristic approaches for flood assessment. Journal of Hydrology, 2020, 582, 124536.	2.3	50
16	Landslide Displacement Prediction Combining LSTM and SVR Algorithms: A Case Study of Shengjibao Landslide from the Three Gorges Reservoir Area. Applied Sciences (Switzerland), 2020, 10, 7830.	1.3	23
17	Potential of Ensemble Learning to Improve Tree-Based Classifiers for Landslide Susceptibility Mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 4642-4662.	2.3	31
18	Uncertainties Analysis of Collapse Susceptibility Prediction Based on Remote Sensing and GIS: Influences of Different Data-Based Models and Connections between Collapses and Environmental Factors. Remote Sensing, 2020, 12, 4134.	1.8	37

#	Article	IF	CITATIONS
19	Using GIS, Remote Sensing, and Machine Learning to Highlight the Correlation between the Land-Use/Land-Cover Changes and Flash-Flood Potential. Remote Sensing, 2020, 12, 1422.	1.8	46
20	The influence of DEM spatial resolution on landslide susceptibility mapping in the Baxie River basin, NW China. Natural Hazards, 2020, 101, 853-877.	1.6	40
21	Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping. Computers and Geosciences, 2020, 139, 104470.	2.0	180
22	Flood susceptibility assessment based on a novel random NaÃ⁻ve Bayes method: A comparison between different factor discretization methods. Catena, 2020, 190, 104536.	2.2	69
23	A novel optimized repeatedly random undersampling for selecting negative samples: A case study in an SVM-based forest fire susceptibility assessment. Journal of Environmental Management, 2020, 271, 111014.	3.8	39
24	Introducing a novel multi-layer perceptron network based on stochastic gradient descent optimized by a meta-heuristic algorithm for landslide susceptibility mapping. Science of the Total Environment, 2020, 742, 140549.	3.9	69
25	Exploring effectiveness of frequency ratio and support vector machine models in storm surge flood susceptibility assessment: A study of Sundarban Biosphere Reserve, India. Catena, 2020, 189, 104450.	2.2	93
26	Comparative study of landslide susceptibility mapping with different recurrent neural networks. Computers and Geosciences, 2020, 138, 104445.	2.0	173
27	Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble. Science of the Total Environment, 2020, 718, 137231.	3.9	124
28	Assessing the degree of soil salinity in the Indian Sundarban Biosphere Reserve using measured soil electrical conductivity and remote sensing data–derived salinity indices. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	12
29	A similarity-based approach to sampling absence data for landslide susceptibility mapping using data-driven methods. Catena, 2019, 183, 104188.	2.2	84
30	Landslide susceptibility evaluating using artificial intelligence method in the Youfang district (China). Environmental Earth Sciences, 2019, 78, 1.	1.3	29
31	Identification of torrential valleys using GIS and a novel hybrid integration of artificial intelligence, machine learning and bivariate statistics. Catena, 2019, 183, 104179.	2.2	64
32	Urban waterlogging susceptibility assessment based on a PSO-SVM method using a novel repeatedly random sampling idea to select negative samples. Journal of Hydrology, 2019, 576, 583-595.	2.3	64
33	Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. Journal of Environmental Management, 2019, 247, 712-729.	3.8	169
34	Flood susceptibility mapping at Ningdu catchment, China using bivariate and data mining techniques. , 2019, , 419-434.		22
35	A comparative study of composite kernels for landslide susceptibility mapping: A case study in Yongxin County, China. Catena, 2019, 183, 104217.	2.2	27
36	Spatial Prediction of Landslide Susceptibility Using GIS-Based Data Mining Techniques of ANFIS with Whale Optimization Algorithm (WOA) and Grey Wolf Optimizer (GWO). Applied Sciences (Switzerland), 2019, 9, 3755.	1.3	129

#	Article	IF	CITATIONS
37	Modeling Hydro-Dynamics in a Harbor Area in the Daishan Island, China. Water (Switzerland), 2019, 11, 192.	1.2	10
38	Exploring the effects of the design and quantity of absence data on the performance of random forest-based landslide susceptibility mapping. Catena, 2019, 176, 45-64.	2.2	127
39	Flood susceptibility modelling using novel hybrid approach of reduced-error pruning trees with bagging and random subspace ensembles. Journal of Hydrology, 2019, 575, 864-873.	2.3	213
40	Assessing coastal island vulnerability in the Sundarban Biosphere Reserve, India, using geospatial technology. Environmental Earth Sciences, 2019, 78, 1.	1.3	44
41	A systematic review on approaches and methods used for flood vulnerability assessment: framework for future research. Natural Hazards, 2019, 96, 975-998.	1.6	66
42	A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods. Journal of Hydrology, 2019, 573, 311-323.	2.3	409
43	Predicting spatial patterns of wildfire susceptibility in the Huichang County, China: An integrated model to analysis of landscape indicators. Ecological Indicators, 2019, 101, 878-891.	2.6	78
44	Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Science of the Total Environment, 2019, 666, 975-993.	3.9	303
45	Mapping earthquake-triggered landslide susceptibility by use of artificial neural network (ANN) models: an example of the 2013 Minxian (China) Mw 5.9 event. Geomatics, Natural Hazards and Risk, 2019, 10, 1-25.	2.0	93
46	A Hybrid GIS Multi-Criteria Decision-Making Method for Flood Susceptibility Mapping at Shangyou, China. Remote Sensing, 2019, 11, 62.	1.8	110
47	Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling. Bulletin of Engineering Geology and the Environment, 2019, 78, 4397-4419.	1.6	135
48	Landslide susceptibility assessment at the Wuning area, China: a comparison between multi-criteria decision making, bivariate statistical and machine learning methods. Natural Hazards, 2019, 96, 173-212.	1.6	94
49	Step-wise Land-class Elimination Approach for extracting mixed-type built-up areas of Kolkata megacity. Geocarto International, 2019, 34, 504-527.	1.7	11
50	Spatial prediction of landslide susceptibility using data mining-based kernel logistic regression, naive Bayes and RBFNetwork models for the Long County area (China). Bulletin of Engineering Geology and the Environment, 2019, 78, 247-266.	1.6	122
51	Analyzing urban spatial patterns and trend of urban growth using urban sprawl matrix: A study on Kolkata urban agglomeration, India. Science of the Total Environment, 2018, 628-629, 1557-1566.	3.9	198
52	GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method. Catena, 2018, 164, 135-149.	2.2	207
53	Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Science of the Total Environment, 2018, 626, 1121-1135.	3.9	296
54	Assessing deforestation susceptibility to forest ecosystem in Rudraprayag district, India using fragmentation approach and frequency ratio model. Science of the Total Environment, 2018, 627, 1264-1275.	3.9	41

#	Article	IF	CITATIONS
55	Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China. Science of the Total Environment, 2018, 625, 575-588.	3.9	279
56	Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China). Catena, 2018, 163, 399-413.	2.2	367
57	A novel ensemble approach of bivariate statistical-based logistic model tree classifier for landslide susceptibility assessment. Geocarto International, 2018, 33, 1398-1420.	1.7	93
58	Applying genetic algorithms to set the optimal combination of forest fire related variables and model forest fire susceptibility based on data mining models. The case of Dayu County, China. Science of the Total Environment, 2018, 630, 1044-1056.	3.9	114
59	Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Science of the Total Environment, 2018, 621, 1124-1141.	3.9	298
60	Improving the accuracy of landslide susceptibility model using a novel region-partitioning approach. Landslides, 2018, 15, 753-772.	2.7	49
61	Landslide Detection and Susceptibility Mapping by AIRSAR Data Using Support Vector Machine and Index of Entropy Models in Cameron Highlands, Malaysia. Remote Sensing, 2018, 10, 1527.	1.8	121
62	Comparison of the presence-only method and presence-absence method in landslide susceptibility mapping. Catena, 2018, 171, 222-233.	2.2	75
63	A comparative study of an expert knowledge-based model and two data-driven models for landslide susceptibility mapping. Catena, 2018, 166, 317-327.	2.2	81
64	Landslide susceptibility assessment in the Anfu County, China: comparing different statistical and probabilistic models considering the new topo-hydrological factor (HAND). Earth Science Informatics, 2018, 11, 605-622.	1.6	21
65	CIS-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, Na÷ve-Bayes tree, and alternating decision tree models. Geomatics, Natural Hazards and Risk, 2017, 8, 950-973.	2.0	179
66	Comparing the Performance of a Logistic Regression and a Random Forest Model in Landslide Susceptibility Assessments. the Case of Wuyaun Area, China. , 2017, , 1043-1050.		10
67	A hybrid fuzzy weight of evidence method in landslide susceptibility analysis on the Wuyuan area, China. Geomorphology, 2017, 290, 1-16.	1.1	115
68	A comparative assessment between linear and quadratic discriminant analyses (LDA-QDA) with frequency ratio and weights-of-evidence models for forest fire susceptibility mapping in China. Arabian Journal of Geosciences, 2017, 10, 1.	0.6	91
69	A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. Catena, 2017, 151, 147-160.	2.2	637
70	A novel hybrid integration model using support vector machines and random subspace for weather-triggered landslide susceptibility assessment in the Wuning area (China). Environmental Earth Sciences, 2017, 76, 1.	1.3	105
71	GIS-based spatial prediction of flood prone areas using standalone frequency ratio, logistic regression, weight of evidence and their ensemble techniques. Geomatics, Natural Hazards and Risk, 2017, 8, 1538-1561.	2.0	178
72	Spatial prediction of rotational landslide using geographically weighted regression, logistic regression, and support vector machine models in Xing Guo area (China). Geomatics, Natural Hazards and Risk, 2017, 8, 1997-2022.	2.0	40

#	Article	IF	CITATIONS
73	A novel hybrid artificial intelligence approach based on the rotation forest ensemble and naÃ`ve Bayes tree classifiers for a landslide susceptibility assessment in Langao County, China. Geomatics, Natural Hazards and Risk, 2017, 8, 1955-1977.	2.0	162
74	Comparison of four kernel functions used in support vector machines for landslide susceptibility mapping: a case study at Suichuan area (China). Geomatics, Natural Hazards and Risk, 2017, 8, 544-569.	2.0	100
75	Applying Information Theory and GIS-based quantitative methods to produce landslide susceptibility maps in Nancheng County, China. Landslides, 2017, 14, 1091-1111.	2.7	136
76	Spatial distribution and susceptibility analyses of pre-earthquake and coseismic landslides related to the Ms 6.5 earthquake of 2014 in Ludian, Yunan, China. Geocarto International, 2017, 32, 978-989.	1.7	22
77	Interpretation and Research On Landuse Based On Landsat 7 ETM Plus Remote Sensing Data. IOP Conference Series: Earth and Environmental Science, 2016, 44, 032003.	0.2	1
78	Spatial prediction of landslide susceptibility using integrated frequency ratio with entropy and support vector machines by different kernel functions. Environmental Earth Sciences, 2016, 75, 1.	1.3	43
79	A GIS-based comparative study of frequency ratio, statistical index and weights-of-evidence models in landslide susceptibility mapping. Arabian Journal of Geosciences, 2016, 9, 1.	0.6	84
80	Landslide susceptibility mapping based on GIS and support vector machine models for the Qianyang County, China. Environmental Earth Sciences, 2016, 75, 1.	1.3	64
81	Landslide susceptibility assessment in Lianhua County (China): A comparison between a random forest data mining technique and bivariate and multivariate statistical models. Geomorphology, 2016, 259, 105-118.	1.1	330
82	GIS-based landslide spatial modeling in Ganzhou City, China. Arabian Journal of Geosciences, 2016, 9, 1.	0.6	123
83	Spatial prediction of landslide hazard at the Luxi area (China) using support vector machines. Environmental Earth Sciences, 2016, 75, 1.	1.3	103
84	Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. Catena, 2015, 133, 266-281.	2.2	349
85	Landslide Susceptibility Assessment at the Xiushui Area (China) Using Frequency Ratio Model. Procedia Earth and Planetary Science, 2015, 15, 513-517.	0.6	18
86	Spatial Prediction of Landslide Hazard at the Yihuang Area (China): A Comparative Study on the Predictive Ability of Backpropagation Multi-layer Perceptron Neural Networks and Radial Basic Function Neural Networks. Lecture Notes in Geoinformation and Cartography, 2015, , 175-188.	0.5	22
87	Attribution of the changes in annual streamflow in the Yangtze River Basin over the past 146Âyears. Theoretical and Applied Climatology, 2015, 119, 323-332.	1.3	22
88	Effects of climatic variation on pan-evaporation in the Poyang Lake Basin, China. Climate Research, 2014, 61, 29-40.	0.4	20
89	Assessing the effect of climate change on reference evapotranspiration in China. Stochastic Environmental Research and Risk Assessment, 2013, 27, 1871-1881.	1.9	75
90	Rainfall-induced landslide susceptibility assessment at the Chongren area (China) using frequency ratio, certainty factor, and index of entropy. Geocarto International, 0, , 1-16.	1.7	105

#	Article	IF	CITATIONS
91	Application of frequency ratio, weights of evidence and evidential belief function models in landslide susceptibility mapping. Geocarto International, 0, , 1-21.	1.7	65