
Susanne I Wells

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5857952/publications.pdf Version: 2024-02-01

SUSANNE I WELLS

#	Article	IF	CITATIONS
1	BIRC2–BIRC3 amplification: a potentially druggable feature of a subset of head and neck cancers in patients with Fanconi anemia. Scientific Reports, 2022, 12, 45.	3.3	10
2	Head and Neck Cancer Susceptibility and Metabolism in Fanconi Anemia. Cancers, 2022, 14, 2040.	3.7	2
3	Inherited DNA Repair Defects Disrupt the Structure and Function of Human Skin. Cell Stem Cell, 2021, 28, 424-435.e6.	11.1	10
4	Differential transcriptome response to proton versus X-ray radiation reveals novel candidate targets for combinatorial PT therapy in lymphoma. Radiotherapy and Oncology, 2021, 155, 293-303.	0.6	5
5	Patient-Derived Organotypic Epithelial Rafts Model Phenotypes in Juvenile-Onset Recurrent Respiratory Papillomatosis. Viruses, 2021, 13, 68.	3.3	11
6	FLASH Proton Pencil Beam Scanning Irradiation Minimizes Radiation-Induced Leg Contracture and Skin Toxicity in Mice. Cancers, 2021, 13, 1012.	3.7	109
7	Human Papillomavirus Oral- and Sero- Positivity in Fanconi Anemia. Cancers, 2021, 13, 1368.	3.7	3
8	HPV Strain Predicts Severity of Juvenile-Onset Recurrent Respiratory Papillomatosis with Implications for Disease Screening. Cancers, 2021, 13, 2556.	3.7	7
9	Directed differentiation of human pluripotent stem cells into epidermal stem and progenitor cells. Molecular Biology Reports, 2021, 48, 6213-6222.	2.3	4
10	Tryptophan metabolism is dysregulated in individuals with Fanconi anemia. Blood Advances, 2021, 5, 250-261.	5.2	4
11	Personalized Assessment of Normal Tissue Radiosensitivity via Transcriptome Response to Photon, Proton and Carbon Irradiation in Patient-Derived Human Intestinal Organoids. Cancers, 2020, 12, 469.	3.7	9
12	An induced pluripotent stem cell model of Fanconi anemia reveals mechanisms of p53-driven progenitor cell differentiation. Blood Advances, 2020, 4, 4679-4692.	5.2	1
13	Characterization of a head and neck cancer-derived cell line panel confirms the distinct TP53-proficient copy number-silent subclass. Oral Oncology, 2019, 98, 53-61.	1.5	22
14	The distribution of novel biomarkers in carcinoma-in-situ, microinvasive, and squamous cell carcinoma of the uterine cervix. Annals of Diagnostic Pathology, 2019, 38, 115-122.	1.3	27
15	Synergy between Resolvins and Immune Checkpoint Blockade in a Novel Transplantable FANCC â^'/â^' Murine Head and Neck Tumor Model. FASEB Journal, 2019, 33, 496.10.	0.5	1
16	Loss of DEK induces radioresistance of murine restricted hematopoietic progenitors. Experimental Hematology, 2018, 59, 40-50.e3.	0.4	9
17	Lipidomic Profiling Links the Fanconi Anemia Pathway to Glycosphingolipid Metabolism in Head and Neck Cancer Cells. Clinical Cancer Research, 2018, 24, 2700-2709.	7.0	21
18	The nuclear DEK interactome supports multiâ€functionality. Proteins: Structure, Function and Bioinformatics, 2018, 86, 88-97.	2.6	19

SUSANNE I WELLS

#	Article	lF	CITATIONS
19	Limited detection of human polyomaviruses in Fanconi anemia related squamous cell carcinoma. PLoS ONE, 2018, 13, e0209235.	2.5	7
20	Esophageal Organoids from Human Pluripotent Stem Cells Delineate Sox2 Functions during Esophageal Specification. Cell Stem Cell, 2018, 23, 501-515.e7.	11.1	121
21	New biomarkers of human papillomavirus infection in acute cervical intraepithelial neoplasia. Annals of Diagnostic Pathology, 2018, 36, 21-27.	1.3	14
22	Risk of Human Papillomavirus Infection in Cancer-Prone Individuals: What We Know. Viruses, 2018, 10, 47.	3.3	19
23	Dek overexpression in murine epithelia increases overt esophageal squamous cell carcinoma incidence. PLoS Genetics, 2018, 14, e1007227.	3.5	17
24	Cancer Cell Metabolism: Implications for X-ray and Particle Radiation Therapy. International Journal of Particle Therapy, 2018, 5, 40-48.	1.8	8
25	Modeling Fanconi Anemia Using Human Induced Pluripotent Stem Cells By Reversible Complementation. Blood, 2018, 132, 3856-3856.	1.4	0
26	Impaired immune function in children and adults with Fanconi anemia. Pediatric Blood and Cancer, 2017, 64, e26599.	1.5	24
27	DEK is required for homologous recombination repair of DNA breaks. Scientific Reports, 2017, 7, 44662.	3.3	30
28	Overexpression of the human DEK oncogene reprograms cellular metabolism and promotes glycolysis. PLoS ONE, 2017, 12, e0177952.	2.5	22
29	PLK1 inhibition enhances temozolomide efficacy in IDH1 mutant gliomas. Oncotarget, 2017, 8, 15827-15837.	1.8	14
30	DEK associates with tumor stage and outcome in HPV16 positive oropharyngeal squamous cell carcinoma. Oncotarget, 2017, 8, 23414-23426.	1.8	9
31	Overcoming Pluripotent Stem Cell Dependence on the Repair of Endogenous DNA Damage. Stem Cell Reports, 2016, 6, 44-54.	4.8	29
32	Defects in the Fanconi Anemia Pathway in Head and Neck Cancer Cells Stimulate Tumor Cell Invasion through DNA-PK and Rac1 Signaling. Clinical Cancer Research, 2016, 22, 2062-2073.	7.0	30
33	The cyclic GMP/protein kinase G pathway as a therapeutic target in head and neck squamous cell carcinoma. Cancer Letters, 2016, 370, 279-285.	7.2	61
34	DEK over-expression promotes mitotic defects and micronucleus formation. Cell Cycle, 2015, 14, 3939-3953.	2.6	22
35	Oral Human Papillomavirus Is Common in Individuals with Fanconi Anemia. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 864-872.	2.5	23
36	Acquisition of Relative Interstrand Crosslinker Resistance and PARP Inhibitor Sensitivity in Fanconi Anemia Head and Neck Cancers. Clinical Cancer Research, 2015, 21, 1962-1972.	7.0	20

SUSANNE I WELLS

#	Article	IF	CITATIONS
37	HPV Virology: Cellular Targets of HPV Oncogenes and Transformation. , 2015, , 69-101.		0
38	Models of Pluripotent and Somatic Stem Cells to Study Tissue-Specific Sensitivities in Fanconi Anemia. Blood, 2015, 126, 168-168.	1.4	1
39	IRAK1 is a novel DEK transcriptional target and is essential for head and neck cancer cell survival. Oncotarget, 2015, 6, 43395-43407.	1.8	34
40	Human Papillomavirus Induced Transformation in Cervical and Head and Neck Cancers. Cancers, 2014, 6, 1793-1820.	3.7	46
41	High-Risk Human Papillomavirus E6 Protein Promotes Reprogramming of Fanconi Anemia Patient Cells through Repression of p53 but Does Not Allow for Sustained Growth of Induced Pluripotent Stem Cells. Journal of Virology, 2014, 88, 11315-11326.	3.4	25
42	Prevalence and outcome of mutations (mut) in the Fanconi anemia (FA) DNA repair pathway among head and neck cancer (H&N Ca) patients (pts) Journal of Clinical Oncology, 2014, 32, 6036-6036.	1.6	0
43	Inducible Loss of the Fanconi Anemia Pathway in iPSC Causes Rapid Cell Cycle Arrest and Apoptosis through ATM/ATR and p53 Signaling. Blood, 2014, 124, 3528-3528.	1.4	0
44	Stacking the DEK: From chromatin topology to cancer stem cells. Cell Cycle, 2013, 12, 51-66.	2.6	60
45	The Fanconi anemia pathway: Repairing the link between DNA damage and squamous cell carcinoma. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2013, 743-744, 78-88.	1.0	50
46	The Fanconi Anemia Pathway Limits Human Papillomavirus Replication. Journal of Virology, 2012, 86, 8131-8138.	3.4	53
47	The DEK Oncogene Is a Target of Steroid Hormone Receptor Signaling in Breast Cancer. PLoS ONE, 2012, 7, e46985.	2.5	34
48	Impaired immune function in children with Fanconi anaemia. British Journal of Haematology, 2011, 154, 234-240.	2.5	38
49	Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature, 2011, 470, 105-109.	27.8	1,594
50	Alteration of microRNA profiles in squamous cell carcinoma of the head and neck cell lines by human papillomavirus. Head and Neck, 2011, 33, 504-512.	2.0	134
51	The human DEK oncogene regulates DNA damage response signaling and repair. Nucleic Acids Research, 2011, 39, 7465-7476.	14.5	82
52	Overexpression of the Cellular DEK Protein Promotes Epithelial Transformation <i>In vitro</i> and <i>In vivo</i> . Cancer Research, 2009, 69, 1792-1799.	0.9	83
53	DEK Proto-Oncogene Expression Interferes with the Normal Epithelial Differentiation Program. American Journal of Pathology, 2009, 174, 71-81.	3.8	61
54	Apoptosis Inhibition by the Human DEK Oncoprotein Involves Interference with p53 Functions. Molecular and Cellular Biology, 2006, 26, 7506-7519.	2.3	111

#	Article	IF	CITATIONS
55	The Human DEK Proto-Oncogene Is a Senescence Inhibitor and an Upregulated Target of High-Risk Human Papillomavirus E7. Journal of Virology, 2005, 79, 14309-14317.	3.4	109