List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5857775/publications.pdf Version: 2024-02-01

DETED TEN DIKE

#	Article	IF	CITATIONS
1	TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature, 1997, 390, 465-471.	27.8	3,514
2	Induction of Apoptosis by ASK1, a Mammalian MAPKKK That Activates SAPK/JNK and p38 Signaling Pathways. Science, 1997, 275, 90-94.	12.6	2,209
3	Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signalling. Nature, 1997, 389, 631-635.	27.8	1,684
4	Direct binding of Smad3 and Smad4 to critical TGFbeta -inducible elements in the promoter of human plasminogen activator inhibitor-type 1gene. EMBO Journal, 1998, 17, 3091-3100.	7.8	1,637
5	New insights into TGF-β–Smad signalling. Trends in Biochemical Sciences, 2004, 29, 265-273.	7.5	1,097
6	Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO Journal, 2002, 21, 1743-1753.	7.8	972
7	TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO Journal, 1997, 16, 5353-5362.	7.8	946
8	Activin receptor-like kinase 1 modulates transforming growth factor-β1 signaling in the regulation of angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 2626-2631.	7.1	785
9	Sclerostin Is an Osteocyte-expressed Negative Regulator of Bone Formation, But Not a Classical BMP Antagonist. Journal of Experimental Medicine, 2004, 199, 805-814.	8.5	785
10	Identification and Functional Characterization of Distinct Critically Important Bone Morphogenetic Protein-specific Response Elements in the Id1 Promoter. Journal of Biological Chemistry, 2002, 277, 4883-4891.	3.4	771
11	Cloning of a TGF\$beta; type I receptor that forms a heteromeric complex with the TGF\$beta; type II receptor. Cell, 1993, 75, 681-692.	28.9	769
12	Specificity, diversity, and regulation in TGFâ€Ĵ² superfamily signaling. FASEB Journal, 1999, 13, 2105-2124.	0.5	725
13	Extracellular control of TGFβ signalling in vascular development and disease. Nature Reviews Molecular Cell Biology, 2007, 8, 857-869.	37.0	708
14	Targeting TGF-Î ² Signaling in Cancer. Trends in Cancer, 2017, 3, 56-71.	7.4	697
15	TGF-β-Mediated Epithelial-Mesenchymal Transition and Cancer Metastasis. International Journal of Molecular Sciences, 2019, 20, 2767.	4.1	635
16	Activin Receptor-like Kinase (ALK)1 Is an Antagonistic Mediator of Lateral TGFβ/ALK5 Signaling. Molecular Cell, 2003, 12, 817-828.	9.7	631
17	Transforming Growth Factor-β1 to the Bone. Endocrine Reviews, 2005, 26, 743-774.	20.1	622
18	Endoglin promotes endothelial cell proliferation and TGF-β/ALK1 signal transduction. EMBO Journal, 2004, 23, 4018-4028.	7.8	592

#	Article	IF	CITATIONS
19	TGF-β in progression of liver disease. Cell and Tissue Research, 2012, 347, 245-256.	2.9	581
20	Characterization of Type I Receptors for Transforming Growth Factor-Î ² and Activin. Science, 1994, 264, 101-104.	12.6	544
21	Apoptosis in podocytes induced by TGF-β and Smad7. Journal of Clinical Investigation, 2001, 108, 807-816.	8.2	534
22	Identification and Functional Characterization of a Smad Binding Element (SBE) in the JunB Promoter That Acts as a Transforming Growth Factor-β, Activin, and Bone Morphogenetic Protein-inducible Enhancer. Journal of Biological Chemistry, 1998, 273, 21145-21152.	3.4	523
23	Cloning and characterization of a human type II receptor for bone morphogenetic proteins Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 7632-7636.	7.1	507
24	Abnormal angiogenesis but intact hematopoietic potential in TGF-beta type I receptor-deficient mice. EMBO Journal, 2001, 20, 1663-1673.	7.8	488
25	BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. Journal of Cell Science, 2007, 120, 964-972.	2.0	480
26	TGF-β signaling in vascular biology and dysfunction. Cell Research, 2009, 19, 116-127.	12.0	476
27	Signaling of transforming growth factorâ€Î² family members through Smad proteins. FEBS Journal, 2000, 267, 6954-6967.	0.2	466
28	Osteogenic protein-1 binds to activin type II receptors and induces certain activin-like effects Journal of Cell Biology, 1995, 130, 217-226.	5.2	463
29	<scp>TGF</scp> â€Î² signalling and liver disease. FEBS Journal, 2016, 283, 2219-2232.	4.7	457
30	TGF-? receptor function in the endothelium. Cardiovascular Research, 2005, 65, 599-608.	3.8	453
31	Regulation of cell proliferation by Smad proteins. Journal of Cellular Physiology, 2002, 191, 1-16.	4.1	418
32	TGF-β signaling by Smad proteins. Advances in Immunology, 2000, 75, 115-157.	2.2	410
33	Hedgehog Creates a Gradient of DPP Activity in Drosophila Wing Imaginal Discs. Molecular Cell, 2000, 5, 59-71.	9.7	375
34	MED12 Controls the Response to Multiple Cancer Drugs through Regulation of TGF-Î ² Receptor Signaling. Cell, 2012, 151, 937-950.	28.9	371
35	TGF-Î ² signalling and its role in cancer progression and metastasis. Cancer and Metastasis Reviews, 2012, 31, 553-568.	5.9	367
36	Induction of Sonic Hedgehog Mediators by Transforming Growth Factor-β: Smad3-Dependent Activation of <i>Gli2</i> and <i>Gli1</i> Expression <i>In vitro</i> and <i>In vivo</i> . Cancer Research, 2007, 67, 6981-6986.	0.9	359

#	Article	IF	CITATIONS
37	FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. Journal of Clinical Investigation, 2013, 123, 3600-3613.	8.2	354
38	The L45 loop in type I receptors for TGF-β family members is a critical determinant in specifying Smad isoform activation. FEBS Letters, 1998, 434, 83-87.	2.8	352
39	Negative regulation of TGF-β receptor/Smad signal transduction. Current Opinion in Cell Biology, 2007, 19, 176-184.	5.4	351
40	Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology, 2003, 125, 178-191.	1.3	348
41	Signaling by members of the TGF-β family in vascular morphogenesis and disease. Trends in Cell Biology, 2010, 20, 556-567.	7.9	348
42	Role of Smad Proteins and Transcription Factor Sp1 in p21Waf1/Cip1 Regulation by Transforming Growth Factor-β. Journal of Biological Chemistry, 2000, 275, 29244-29256.	3.4	347
43	Phosphorylation of Ser465 and Ser467 in the C Terminus of Smad2 Mediates Interaction with Smad4 and Is Required for Transforming Growth Factor-β Signaling. Journal of Biological Chemistry, 1997, 272, 28107-28115.	3.4	345
44	The Tumor Suppressor Smad4 Is Required for Transforming Growth Factor β–Induced Epithelial to Mesenchymal Transition and Bone Metastasis of Breast Cancer Cells. Cancer Research, 2006, 66, 2202-2209.	0.9	344
45	Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell, 2022, 185, 379-396.e38.	28.9	343
46	Signaling inputs converge on nuclear effectors in TGF-β signaling. Trends in Biochemical Sciences, 2000, 25, 64-70.	7.5	340
47	SOST/sclerostin, an osteocyte-derived negative regulator of bone formation. Cytokine and Growth Factor Reviews, 2005, 16, 319-327.	7.2	325
48	The dynamic roles of TGFâ $\in \hat{\mathbf{i}}^2$ in cancer. Journal of Pathology, 2011, 223, 206-219.	4.5	325
49	Induction of Inhibitory Smad6 and Smad7 mRNA by TGF-β Family Members. Biochemical and Biophysical Research Communications, 1998, 249, 505-511.	2.1	323
50	Distinct transforming growth factor-beta (TGF-beta) receptor subsets as determinants of cellular responsiveness to three TGF-beta isoforms. Journal of Biological Chemistry, 1990, 265, 20533-20538.	3.4	302
51	Endoglin in angiogenesis and vascular diseases. Angiogenesis, 2008, 11, 79-89.	7.2	291
52	Identification of another member of the transforming growth factor type beta gene family Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 4715-4719.	7.1	286
53	Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells. Nature Protocols, 2014, 9, 1514-1531.	12.0	281
54	Stimulation of Id1 Expression by Bone Morphogenetic Protein Is Sufficient and Necessary for Bone Morphogenetic Protein–Induced Activation of Endothelial Cells. Circulation, 2002, 106, 2263-2270.	1.6	280

#	Article	IF	CITATIONS
55	Regulation of endothelial cell plasticity by TGF-β. Cell and Tissue Research, 2012, 347, 177-186.	2.9	279
56	Immunoregulation by members of the TGFÎ ² superfamily. Nature Reviews Immunology, 2016, 16, 723-740.	22.7	276
57	USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-β type I receptor. Nature Cell Biology, 2012, 14, 717-726.	10.3	267
58	Distinct and Overlapping Patterns of Localization of Bone Morphogenetic Protein (BMP) Family Members and a BMP Type II Receptor During Fracture Healing in Rats. Bone, 1998, 22, 605-612.	2.9	260
59	Apoptosis in podocytes induced by TGF-Î ² and Smad7. Journal of Clinical Investigation, 2001, 108, 807-816.	8.2	255
60	Signaling via hetero-oligomeric complexes of type I and type II serine/threonine kinase receptors. Current Opinion in Cell Biology, 1996, 8, 139-145.	5.4	250
61	TGF-β-Induced Endothelial-Mesenchymal Transition in Fibrotic Diseases. International Journal of Molecular Sciences, 2017, 18, 2157.	4.1	249
62	Wnt but Not BMP Signaling Is Involved in the Inhibitory Action of Sclerostin on BMP-Stimulated Bone Formation. Journal of Bone and Mineral Research, 2006, 22, 19-28.	2.8	238
63	TGF-Î ² Signaling in Control of Cardiovascular Function. Cold Spring Harbor Perspectives in Biology, 2018, 10, a022210.	5.5	238
64	BMP signaling in vascular diseases. FEBS Letters, 2012, 586, 1993-2002.	2.8	236
65	Transforming Growth Factor-Î ² Signal Transduction in Angiogenesis and Vascular Disorders. Chest, 2005, 128, 585S-590S.	0.8	235
66	Matrix Metalloproteinase-14 (MT1-MMP)–Mediated Endoglin Shedding Inhibits Tumor Angiogenesis. Cancer Research, 2010, 70, 4141-4150.	0.9	231
67	Deficient Smad7 expression: A putative molecular defect in scleroderma. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3908-3913.	7.1	229
68	Synergy and antagonism between Notch and BMP receptor signaling pathways in endothelial cells. EMBO Journal, 2004, 23, 541-551.	7.8	222
69	Transforming Growth Factor β1 Induces Nuclear Export of Inhibitory Smad7. Journal of Biological Chemistry, 1998, 273, 29195-29201.	3.4	218
70	Interaction with colon cancer cells hyperactivates TGF-β signaling in cancer-associated fibroblasts. Oncogene, 2014, 33, 97-107.	5.9	216
71	Transforming Growth Factor-β1 (TGF-β)–induced Apoptosis of Prostate Cancer Cells Involves Smad7-dependent Activation of p38 by TGF-β-activated Kinase 1 and Mitogen-activated Protein Kinase Kinase 3. Molecular Biology of the Cell, 2003, 14, 529-544.	2.1	213
72	Bone morphogenetic protein receptors. Bone, 1996, 19, 569-574.	2.9	211

#	Article	IF	CITATIONS
73	Signaling interplay between transforming growth factor-Î ² receptor and PI3K/AKT pathways in cancer. Trends in Biochemical Sciences, 2013, 38, 612-620.	7.5	207
74	Differential Inhibition of Smad6 and Smad7 on Bone Morphogenetic Protein- and Activin-mediated Growth Arrest and Apoptosis in B Cells. Journal of Biological Chemistry, 1999, 274, 13637-13642.	3.4	201
75	TRAF4 Promotes TGF-β Receptor Signaling and Drives Breast Cancer Metastasis. Molecular Cell, 2013, 51, 559-572.	9.7	194
76	Osteocyte-Derived Sclerostin Inhibits Bone Formation: Its Role in Bone Morphogenetic Protein and Wnt Signaling. Journal of Bone and Joint Surgery - Series A, 2008, 90, 31-35.	3.0	193
77	Targeting BMP signalling in cardiovascular disease and anaemia. Nature Reviews Cardiology, 2016, 13, 106-120.	13.7	193
78	Elucidation of Smad Requirement in Transforming Growth Factor-β Type I Receptor-induced Responses. Journal of Biological Chemistry, 2003, 278, 3751-3761.	3.4	189
79	Bone Morphogenetic Protein 7 in the Development and Treatment of Bone Metastases from Breast Cancer. Cancer Research, 2007, 67, 8742-8751.	0.9	188
80	Oral administration of GW788388, an inhibitor of TGF-β type I and II receptor kinases, decreases renal fibrosis. Kidney International, 2008, 73, 705-715.	5.2	187
81	Targeting TGFÎ ² signal transduction for cancer therapy. Signal Transduction and Targeted Therapy, 2021, 6, 8.	17.1	186
82	Follistatins neutralize activin bioactivity by inhibition of activin binding to its type II receptors. Molecular and Cellular Endocrinology, 1996, 116, 105-114.	3.2	185
83	BMP7, a Putative Regulator of Epithelial Homeostasis in the Human Prostate, Is a Potent Inhibitor of Prostate Cancer Bone Metastasis in Vivo. American Journal of Pathology, 2007, 171, 1047-1057.	3.8	183
84	Controlling cell fate by bone morphogenetic protein receptors. Molecular and Cellular Endocrinology, 2003, 211, 105-113.	3.2	182
85	Annexin A1 regulates TGF-β signaling and promotes metastasis formation of basal-like breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6340-6345.	7.1	182
86	Transforming growth factor Î ² signal transduction in hepatic stellate cells via Smad2/3 phosphorylation, a pathway that is abrogated during in vitro progression to myofibroblasts. FEBS Letters, 2001, 502, 4-10.	2.8	179
87	The TGF-β/Smad pathway induces breast cancer cell invasion through the up-regulation of matrix metalloproteinase 2 and 9 in a spheroid invasion model system. Breast Cancer Research and Treatment, 2011, 128, 657-666.	2.5	179
88	Transforming Growth Factor-β Receptor Type I-dependent Fibrogenic Gene Program Is Mediated via Activation of Smad1 and ERK1/2 Pathways. Journal of Biological Chemistry, 2007, 282, 10405-10413.	3.4	173
89	Lack of Primary Cilia Primes Shear-Induced Endothelial-to-Mesenchymal Transition. Circulation Research, 2011, 108, 1093-1101.	4.5	173
90	Animal models of chronic liver diseases. American Journal of Physiology - Renal Physiology, 2013, 304, G449-G468.	3.4	172

#	Article	IF	CITATIONS
91	Functionality of Endothelial Cells and Pericytes From Human Pluripotent Stem Cells Demonstrated in Cultured Vascular Plexus and Zebrafish Xenografts. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 177-186.	2.4	172
92	Transforming growth factor beta signal transduction. Journal of Leukocyte Biology, 2002, 71, 731-40.	3.3	171
93	Regulation of Smad signaling by protein kinase C. FASEB Journal, 2001, 15, 553-555.	0.5	170
94	The deubiquitinating enzyme UCH37 interacts with Smads and regulates TCF-Î ² signalling. Oncogene, 2005, 24, 8080-8084.	5.9	164
95	Smad2 and Smad3 have opposing roles in breast cancer bone metastasis by differentially affecting tumor angiogenesis. Oncogene, 2010, 29, 1351-1361.	5.9	164
96	Bone morphogenetic protein signaling in bone homeostasis. Bone, 2015, 80, 43-59.	2.9	163
97	Action Range of BMP Is Defined by Its N-Terminal Basic Amino Acid Core. Current Biology, 2002, 12, 205-209.	3.9	162
98	Promoting bone morphogenetic protein signaling through negative regulation of inhibitory Smads. EMBO Journal, 2001, 20, 4132-4142.	7.8	160
99	Genetic and pharmacological targeting of activin receptor-like kinase 1 impairs tumor growth and angiogenesis. Journal of Experimental Medicine, 2010, 207, 85-100.	8.5	159
100	Transforming Growth Factor-β (TGF-β)-mediated Connective Tissue Growth Factor (CTGF) Expression in Hepatic Stellate Cells Requires Stat3 Signaling Activation. Journal of Biological Chemistry, 2013, 288, 30708-30719.	3.4	159
101	Nuclear receptor NR4A1 promotes breast cancer invasion and metastasis by activating TGF-β signalling. Nature Communications, 2014, 5, 3388.	12.8	156
102	Controlling mesenchymal stem cell differentiation by TGFβ family members. Journal of Orthopaedic Science, 2003, 8, 740-748.	1.1	155
103	Enhanced expression of type I receptors for bone morphogenetic proteins during bone formation. Journal of Bone and Mineral Research, 1995, 10, 1651-1659.	2.8	154
104	Nuclear Factor YY1 Inhibits Transforming Growth Factor β- and Bone Morphogenetic Protein-Induced Cell Differentiation. Molecular and Cellular Biology, 2003, 23, 4494-4510.	2.3	153
105	TGFβ-induced metabolic reprogramming during epithelial-to-mesenchymal transition in cancer. Cellular and Molecular Life Sciences, 2020, 77, 2103-2123.	5.4	152
106	The Bone Morphogenetic Protein Pathway Is Inactivated in the Majority of Sporadic Colorectal Cancers. Gastroenterology, 2008, 134, 1332-1341.e3.	1.3	151
107	Bone morphogenetic protein receptor signal transduction in human disease. Journal of Pathology, 2019, 247, 9-20.	4.5	151
108	Loss of SMAD4 Alters BMP Signaling to Promote Colorectal Cancer Cell Metastasis via Activation of Rho and ROCK. Gastroenterology, 2014, 147, 196-208.e13.	1.3	150

#	Article	IF	CITATIONS
109	TGF-β family co-receptor function and signaling. Acta Biochimica Et Biophysica Sinica, 2018, 50, 12-36.	2.0	150
110	Identification of Smad2, a Human Mad-related Protein in the Transforming Growth Factor β Signaling Pathway. Journal of Biological Chemistry, 1997, 272, 2896-2900.	3.4	149
111	Smad7 mediates apoptosis induced by transforming growth factor Î ² in prostatic carcinoma cells. Current Biology, 2000, 10, 535-538.	3.9	149
112	Distinct Modes of Inhibition by Sclerostin on Bone Morphogenetic Protein and Wnt Signaling Pathways. Journal of Biological Chemistry, 2010, 285, 41614-41626.	3.4	149
113	VE-cadherin is a critical endothelial regulator of TGF-Î ² signalling. EMBO Journal, 2008, 27, 993-1004.	7.8	146
114	TGFβ Signaling and Cardiovascular Diseases. International Journal of Biological Sciences, 2012, 8, 195-213.	6.4	146
115	Cartilage-Derived Morphogenetic Proteins and Osteogenic Protein-1 Differentially Regulate Osteogenesis. Journal of Bone and Mineral Research, 1998, 13, 383-392.	2.8	145
116	Efficient TGF-Î ² Induction of the Smad7 Gene Requires Cooperation between AP-1, Sp1, and Smad Proteins on the Mouse Smad7 Promoter. Journal of Biological Chemistry, 2000, 275, 29023-29030.	3.4	144
117	Smad7-Induced β-Catenin Degradation Alters Epidermal Appendage Development. Developmental Cell, 2006, 11, 301-312.	7.0	144
118	Physical and Functional Interaction of Murine and Xenopus Smad7 with Bone Morphogenetic Protein Receptors and Transforming Growth Factor-Î ² Receptors. Journal of Biological Chemistry, 1998, 273, 25364-25370.	3.4	143
119	Transforming Growth Factor β–Induced Endothelial-to-Mesenchymal Transition: A Switch to Cardiac Fibrosis?. Trends in Cardiovascular Medicine, 2008, 18, 293-298.	4.9	143
120	Localization of Smads, the TGF-β Family Intracellular Signaling Components During Endochondral Ossification. Journal of Bone and Mineral Research, 1999, 14, 1145-1152.	2.8	141
121	Defective paracrine signalling by TGFβ in yolk sac vasculature of endoglin mutant mice: a paradigm for hereditary haemorrhagic telangiectasia. Development (Cambridge), 2004, 131, 6237-6247.	2.5	141
122	ALK2 R206H mutation linked to fibrodysplasia ossificans progressiva confers constitutive activity to the BMP type I receptor and sensitizes mesenchymal cells to BMP-induced osteoblast differentiation and bone formation. Journal of Bone and Mineral Research, 2010, 25, 1208-1215.	2.8	141
123	ALK1 Opposes ALK5/Smad3 Signaling and Expression of Extracellular Matrix Components in Human Chondrocytes. Journal of Bone and Mineral Research, 2008, 23, 896-906.	2.8	138
124	Endoglin Expression on Cancer-Associated Fibroblasts Regulates Invasion and Stimulates Colorectal Cancer Metastasis. Clinical Cancer Research, 2018, 24, 6331-6344.	7.0	138
125	A Perspective on the Development of TGF-β Inhibitors for Cancer Treatment. Biomolecules, 2019, 9, 743.	4.0	138
126	The FYVE domain in Smad anchor for receptor activation (SARA) is sufficient for localization of SARA in early endosomes and regulates TGFâ€Î²/Smad signalling. Genes To Cells, 2002, 7, 321-331.	1.2	137

#	Article	IF	CITATIONS
127	Smad and AML Proteins Synergistically Confer Transforming Growth Factor β1 Responsiveness to Human Germ-line IgA Genes. Journal of Biological Chemistry, 2000, 275, 3552-3560.	3.4	136
128	TMEPAI, a Transmembrane TGF-β-Inducible Protein, Sequesters Smad Proteins from Active Participation in TGF-β Signaling. Molecular Cell, 2010, 37, 123-134.	9.7	136
129	Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device. Lab on A Chip, 2013, 13, 3562.	6.0	135
130	Exploring anti-TGF-β therapies in cancer and fibrosis. Growth Factors, 2011, 29, 140-152.	1.7	134
131	TGF-β-Induced Endothelial to Mesenchymal Transition in Disease and Tissue Engineering. Frontiers in Cell and Developmental Biology, 2020, 8, 260.	3.7	133
132	DPC4 (SMAD4) mediates transforming growth factor-β1 (TGF-β1) induced growth inhibition and transcriptional response in breast tumour cells. Oncogene, 1997, 14, 1891-1899.	5.9	132
133	ld1 is a critical mediator in TGF-β-induced transdifferentiation of rat hepatic stellate cells. Hepatology, 2006, 43, 1032-1041.	7.3	132
134	Epithelial–mesenchymal-transition-inducing transcription factors: new targets for tackling chemoresistance in cancer?. Oncogene, 2018, 37, 6195-6211.	5.9	131
135	TGF-β Signaling in Breast Cancer Cell Invasion and Bone Metastasis. Journal of Mammary Gland Biology and Neoplasia, 2011, 16, 97-108.	2.7	127
136	On-Target Anti-TGF-β Therapies Are Not Succeeding in Clinical Cancer Treatments: What Are Remaining Challenges?. Frontiers in Cell and Developmental Biology, 2020, 8, 605.	3.7	127
137	Endoglin Has a Crucial Role in Blood Cell–Mediated Vascular Repair. Circulation, 2006, 114, 2288-2297.	1.6	124
138	Inflammation induces endothelialâ€ŧoâ€mesenchymal transition and promotes vascular calcification through downregulation of BMPR2. Journal of Pathology, 2019, 247, 333-346.	4.5	123
139	Activation of the TGF- β /Activin-Smad2 Pathway during Allergic Airway Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2001, 25, 60-68.	2.9	121
140	Endothelialâ€ŧoâ€mesenchymal transition in cardiovascular diseases: Developmental signaling pathways gone awry. Developmental Dynamics, 2018, 247, 492-508.	1.8	120
141	Smad7 Is an Activin-inducible Inhibitor of Activin-induced Growth Arrest and Apoptosis in Mouse B Cells. Journal of Biological Chemistry, 1998, 273, 24293-24296.	3.4	119
142	Age-dependent alteration of TGF-β signalling in osteoarthritis. Cell and Tissue Research, 2012, 347, 257-265.	2.9	119
143	Bone Morphogenetic Proteins in Vascular Homeostasis and Disease. Cold Spring Harbor Perspectives in Biology, 2018, 10, a031989.	5.5	118
144	Activation of Bone Morphogenetic Protein/Smad Signaling in Bronchial Epithelial Cells during Airway Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2002, 27, 160-169.	2.9	117

#	Article	IF	CITATIONS
145	Diffusion of Nodal Signaling Activity in the Absence of the Feedback Inhibitor Lefty2. Developmental Cell, 2001, 1, 127-138.	7.0	116
146	Cancer associated-fibroblast-derived exosomes in cancer progression. Molecular Cancer, 2021, 20, 154.	19.2	116
147	Phosphorylation of Ser165 in TGF-beta type I receptor modulates TGF-beta1-induced cellular responses EMBO Journal, 1996, 15, 6231-6240.	7.8	115
148	Nonsynonymous variants in the <i>SMAD6</i> gene predispose to congenital cardiovascular malformation. Human Mutation, 2012, 33, 720-727.	2.5	114
149	Growth Differentiation Factor-9 Induces Smad2 Activation and Inhibin B Production in Cultured Human Granulosa-Luteal Cells. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 755-762.	3.6	113
150	Expression of type I and type IB receptors for activin in midgestation mouse embryos suggests distinct functions in organogenesis. Mechanisms of Development, 1995, 52, 109-123.	1.7	111
151	Constitutive phosphorylation and nuclear localization of Smad3 are correlated with increased collagen gene transcription in activated hepatic stellate cells. Journal of Cellular Physiology, 2001, 187, 117-123.	4.1	111
152	TGF-β and BMP7 interactions in tumour progression and bone metastasis. Clinical and Experimental Metastasis, 2007, 24, 609-617.	3.3	111
153	Autocrine Bone Morphogenetic Protein-9 Signals through Activin Receptor-like Kinase-2/Smad1/Smad4 to Promote Ovarian Cancer Cell Proliferation. Cancer Research, 2009, 69, 9254-9262.	0.9	110
154	Snail and Slug, key regulators of TGF-β-induced EMT, are sufficient for the induction of single-cell invasion. Biochemical and Biophysical Research Communications, 2013, 435, 58-63.	2.1	110
155	Deficiency for endoglin in tumor vasculature weakens the endothelial barrier to metastatic dissemination. Journal of Experimental Medicine, 2013, 210, 563-579.	8.5	110
156	Human mast cell migration in response to members of the transforming growth factor-β family. Journal of Leukocyte Biology, 2000, 67, 350-356.	3.3	108
157	BMP-9 interferes with liver regeneration and promotes liver fibrosis. Gut, 2017, 66, 939-954.	12.1	107
158	L- and S-endoglin differentially modulate TGFβ1 signaling mediated by ALK1 and ALK5 in L6E9 myoblasts. Journal of Cell Science, 2008, 121, 913-919.	2.0	105
159	Transforming growth factor-beta signaling and tumor angiogenesis. Frontiers in Bioscience - Landmark, 2009, 14, 4848.	3.0	105
160	Identification of a Key Residue Mediating Bone Morphogenetic Protein (BMP)-6 Resistance to Noggin Inhibition Allows for Engineered BMPs with Superior Agonist Activity. Journal of Biological Chemistry, 2010, 285, 12169-12180.	3.4	105
161	Compensatory signalling induced in the yolk sac vasculature by deletion of TGFÎ ² receptors in mice. Journal of Cell Science, 2007, 120, 4269-4277.	2.0	104
162	Global Analysis of Smad2/3-Dependent TGF-β Signaling in Living Mice Reveals Prominent Tissue-Specific Responses to Injury. Journal of Immunology, 2005, 175, 547-554.	0.8	103

#	Article	IF	CITATIONS
163	Transforming Growth Factor-β1 Mutations in Camurati-Engelmann Disease Lead to Increased Signaling by Altering either Activation or Secretion of the Mutant Protein. Journal of Biological Chemistry, 2003, 278, 7718-7724.	3.4	102
164	Recombinant transforming growth factor type beta 3: biological activities and receptor-binding properties in isolated bone cells Molecular and Cellular Biology, 1990, 10, 4473-4479.	2.3	100
165	Nodal Signaling Uses Activin and Transforming Growth Factor-Î ² Receptor-regulated Smads. Journal of Biological Chemistry, 2001, 276, 656-661.	3.4	100
166	Overexpression of Smad7 results in severe pathological alterations in multiple epithelial tissues. EMBO Journal, 2002, 21, 2580-2590.	7.8	100
167	Transforming growth factor-β signalling controls human breast cancer metastasis in a zebrafish xenograft model. Breast Cancer Research, 2013, 15, R106.	5.0	100
168	Expression of Smad proteins in human colorectal cancer. International Journal of Cancer, 1999, 82, 197-202.	5.1	99
169	Expression and localization of bone morphogenetic proteins (BMPs) and BMP receptors in ossification of the ligamentum flavum. Bone, 1997, 21, 23-30.	2.9	98
170	The transcriptional co-activator P/CAF potentiates TGF-beta/Smad signaling. Nucleic Acids Research, 2000, 28, 4291-4298.	14.5	98
171	Dominant-Negative <i>ALK2</i> Allele Associates With Congenital Heart Defects. Circulation, 2009, 119, 3062-3069.	1.6	97
172	c-Myb Enhances Breast Cancer Invasion and Metastasis through the Wnt/β-Catenin/Axin2 Pathway. Cancer Research, 2016, 76, 3364-3375.	0.9	97
173	Connective tissue growth factor expression and Smad signaling during mouse heart development and myocardial infarction. Developmental Dynamics, 2004, 231, 542-550.	1.8	95
174	Cancer-associated fibroblast-derived Gremlin 1 promotes breast cancer progression. Breast Cancer Research, 2019, 21, 109.	5.0	94
175	KLF2 Suppresses TGF-Î ² Signaling in Endothelium Through Induction of Smad7 and Inhibition of AP-1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 532-539.	2.4	92
176	Deubiquitinase Activity Profiling Identifies UCHL1 as a Candidate Oncoprotein That Promotes TGFβ-Induced Breast Cancer Metastasis. Clinical Cancer Research, 2020, 26, 1460-1473.	7.0	92
177	VEGF and inhibitors of TGFÎ ² type-I receptor kinase synergistically promote blood-vessel formation by inducing α5-integrin expression. Journal of Cell Science, 2009, 122, 3294-3302.	2.0	90
178	Anti-human Activin Receptor-like Kinase 1 (ALK1) Antibody Attenuates Bone Morphogenetic Protein 9 (BMP9)-induced ALK1 Signaling and Interferes with Endothelial Cell Sprouting. Journal of Biological Chemistry, 2012, 287, 18551-18561.	3.4	90
179	Breast cancer metastasis suppressor OTUD1 deubiquitinates SMAD7. Nature Communications, 2017, 8, 2116.	12.8	90
180	SIGNAL TRANSDUCTION OF BONE MORPHOGENETIC PROTEINS IN OSTEOBLAST DIFFERENTIATION. Journal of Bone and Joint Surgery - Series A, 2003, 85, 34-38.	3.0	90

#	Article	IF	CITATIONS
181	Elevated TGFβ–Smad signalling in experimental <i>Pkd1</i> models and human patients with polycystic kidney disease. Journal of Pathology, 2010, 222, 21-31.	4.5	89
182	Xenopus Smad4Î ² Is the Co-Smad Component of Developmentally Regulated Transcription Factor Complexes Responsible for Induction of Early Mesodermal Genes. Developmental Biology, 1999, 214, 354-369.	2.0	88
183	Physical and Functional Interaction between GATA-3 and Smad3 Allows TGF-Î ² Regulation of GATA Target Genes. Current Biology, 2002, 12, 35-45.	3.9	87
184	TGFβ Signaling and Cardiovascular Diseases. International Journal of Biological Sciences, 2012, 8, 195-213.	6.4	87
185	Functional consequences of tumorigenic missense mutations in the amino-terminal domain of Smad4. Oncogene, 2000, 19, 4396-4404.	5.9	86
186	Signaling by ALK5 mediates TGF-β-induced ET-1 expression in endothelial cells: a role for migration and proliferation. Journal of Cell Science, 2007, 120, 1256-1266.	2.0	86
187	Specific interactions between Smad proteins and AP-1 components determine TGFβ-induced breast cancer cell invasion. Oncogene, 2013, 32, 3606-3615.	5.9	84
188	BMP type II receptor as a therapeutic target in pulmonary arterial hypertension. Cellular and Molecular Life Sciences, 2017, 74, 2979-2995.	5.4	84
189	RNF12 Controls Embryonic Stem Cell Fate and Morphogenesis in Zebrafish Embryos by Targeting Smad7 for Degradation. Molecular Cell, 2012, 46, 650-661.	9.7	83
190	Combined Inhibition of TGF-β Signaling and the PD-L1 Immune Checkpoint Is Differentially Effective in Tumor Models. Cells, 2019, 8, 320.	4.1	82
191	Spatio-temporal activation of Smad1 and Smad5 in vivo: monitoring transcriptional activity of Smad proteins. Journal of Cell Science, 2004, 117, 4653-4663.	2.0	81
192	Ionizing Radiation Shifts the PAI-1/ID-1 Balance and Activates Notch Signaling in Endothelial Cells. International Journal of Radiation Oncology Biology Physics, 2009, 73, 506-513.	0.8	81
193	Efficient Association of an Amino-terminally Extended Form of Human Latent Transforming Growth Factor-β Binding Protein with the Extracellular Matrix. Journal of Biological Chemistry, 1995, 270, 31294-31297.	3.4	80
194	BMP Pathways Are Involved in Otic Capsule Formation and Epithelial–Mesenchymal Signaling in the Developing Chicken Inner Ear. Developmental Biology, 2002, 251, 380-394.	2.0	79
195	Biphasic effects of transforming growth factor β on bone morphogenetic protein–induced osteoblast differentiation. Journal of Bone and Mineral Research, 2011, 26, 1178-1187.	2.8	79
196	Distinct spatial and temporal expression patterns of two type I receptors for bone morphogenetic proteins during mouse embryogenesis. Endocrinology, 1995, 136, 2652-2663.	2.8	79
197	JUNB governs a feed-forward network of TCFβ signaling that aggravates breast cancer invasion. Nucleic Acids Research, 2018, 46, 1180-1195.	14.5	77
198	The therapeutic potential of targeting the endothelial-to-mesenchymal transition. Angiogenesis, 2019, 22, 3-13.	7.2	77

#	Article	IF	CITATIONS
199	Smad1 pathway is activated in systemic sclerosis fibroblasts and is targeted by imatinib mesylate. Arthritis and Rheumatism, 2008, 58, 2528-2537.	6.7	75
200	Ubiquitin-specific Protease 4 Mitigates Toll-like/Interleukin-1 Receptor Signaling and Regulates Innate Immune Activation. Journal of Biological Chemistry, 2012, 287, 11002-11010.	3.4	75
201	Interaction between GC Box Binding Factors and Smad Proteins Modulates Cell Lineage-specific α2(I) Collagen Gene Transcription. Journal of Biological Chemistry, 2001, 276, 16573-16579.	3.4	74
202	Genomic characterization of the human DNA excision repair geneERCC-1. Nucleic Acids Research, 1987, 15, 9195-9214.	14.5	73
203	Intracellular signaling of osteogenic protein-1 through Smad5 activation. , 1998, 177, 355-363.		73
204	Preventive and therapeutic effects of Smad7 on radiation-induced oral mucositis. Nature Medicine, 2013, 19, 421-428.	30.7	73
205	Bone morphogenetic protein 6 and oxidized low-density lipoprotein synergistically recruit osteogenic differentiation in endothelial cells. Cardiovascular Research, 2015, 108, 278-287.	3.8	73
206	Serine/threonine kinase receptors. Progress in Growth Factor Research, 1994, 5, 55-72.	1.6	72
207	Fine-tuning BMP7 signalling in adipogenesis by UBE2O/E2-230K-mediated monoubiquitination of SMAD6. EMBO Journal, 2013, 32, 996-1007.	7.8	72
208	Expression of transforming-growth-factor (TGF)-? receptors and Smad proteins in glioblastoma cell lines with distinct responses to TGF-?1. , 1999, 80, 756-763.		70
209	Aberrant Bmp signaling and notochord delamination in the pathogenesis of esophageal atresia. Developmental Dynamics, 2007, 236, 746-754.	1.8	70
210	A rapid and sensitive bioassay to measure bone morphogenetic protein activity. BMC Cell Biology, 2007, 8, 41.	3.0	69
211	TGF-Î ² Signaling in Endothelial-to-Mesenchymal Transition: The Role of Shear Stress and Primary CiliaA Presentation from the Keystone Symposium on Epithelial Plasticity and Epithelial to Mesenchymal Transition, Vancouver, Canada, 21 to 26 January 2011 Science Signaling, 2012, 5, pt2.	3.6	69
212	UBE2O negatively regulates TRAF6-mediated NF-κB activation by inhibiting TRAF6 polyubiquitination. Cell Research, 2013, 23, 366-377.	12.0	69
213	A Novel Type I Receptor Serine-Threonine Kinase Predominantly Expressed in the Adult Central Nervous System. Journal of Biological Chemistry, 1996, 271, 30603-30609.	3.4	68
214	Identification of receptors and Smad proteins involved in activin signalling in a human epidermal keratinocyte cell line. Genes To Cells, 1998, 3, 125-134.	1.2	68
215	Bone morphogenetic protein signal transduction in bone. Current Medical Research and Opinion, 2006, 22, S7-S11.	1.9	68
216	Critical role of endoglin in tumor cell plasticity of Ewing sarcoma and melanoma. Oncogene, 2011, 30, 334-345.	5.9	68

#	ARTICLE	IF	CITATIONS
217	A Kinome-Wide Small Interfering RNA Screen Identifies Proviral and Antiviral Host Factors in Severe Acute Respiratory Syndrome Coronavirus Replication, Including Double-Stranded RNA-Activated Protein Kinase and Early Secretory Pathway Proteins. Journal of Virology, 2015, 89, 8318-8333.	3.4	68
218	Controlling angiogenesis by two unique TGF-β type I receptor signaling pathways. Histology and Histopathology, 2011, 26, 1219-30.	0.7	68
219	Endoglin promotes TGF-β/Smad1 signaling in scleroderma fibroblasts. Journal of Cellular Physiology, 2011, 226, 3340-3348.	4.1	67
220	Induced Pluripotent Stem Cells to Model Human Fibrodysplasia Ossificans Progressiva. Stem Cell Reports, 2015, 5, 963-970.	4.8	67
221	New mechanisms of skin innate immunity: ASK1-mediated keratinocyte differentiation regulates the expression of β-defensins, LL37, and TLR2. European Journal of Immunology, 2005, 35, 1886-1895.	2.9	66
222	The prognostic role of TGF-β signaling pathway in breast cancer patients. Annals of Oncology, 2013, 24, 384-390.	1.2	65
223	Bone morphogenetic protein receptors: Structure, function and targeting by selective small molecule kinase inhibitors. Bone, 2020, 138, 115472.	2.9	65
224	TGF-β Receptor Signaling Pathways in Angiogenesis; Emerging Targets for Anti-Angiogenesis Therapy. Current Pharmaceutical Biotechnology, 2011, 12, 2108-2120.	1.6	62
225	The BMP pathway either enhances or inhibits the Wnt pathway depending on the SMAD4 and p53 status in CRC. British Journal of Cancer, 2015, 112, 122-130.	6.4	61
226	Role of soluble endoglin in BMP9 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17800-17808.	7.1	61
227	The rationale for targeting <scp>TGF</scp> â€Î² in chronic liver diseases. European Journal of Clinical Investigation, 2016, 46, 349-361.	3.4	60
228	ENDOGLIN Is Dispensable for Vasculogenesis, but Required for Vascular Endothelial Growth Factor-Induced Angiogenesis. PLoS ONE, 2014, 9, e86273.	2.5	59
229	Reversible ubiquitination regulates the Smad/TGF-l² signalling pathway. Biochemical Society Transactions, 2006, 34, 761-763.	3.4	58
230	TGFÎ ² Signaling in Liver Regeneration. Current Pharmaceutical Design, 2012, 18, 4103-4113.	1.9	58
231	Growth Factors For Wound Healing. Nature Biotechnology, 1989, 7, 793-798.	17.5	57
232	Cellâ€ŧype specific regulation of myostatin signaling. FASEB Journal, 2012, 26, 1462-1472.	0.5	57
233	In Brief: Endothelialâ€ŧoâ€mesenchymal transition. Journal of Pathology, 2016, 238, 378-380.	4.5	57
234	Mutant ACVR1 Arrests Glial Cell Differentiation to Drive Tumorigenesis in Pediatric Gliomas. Cancer Cell, 2020, 37, 308-323.e12.	16.8	56

#	Article	IF	CITATIONS
235	Gene Array Analysis of Bone Morphogenetic Protein Type I Receptor-Induced Osteoblast Differentiation. Journal of Bone and Mineral Research, 2003, 18, 1177-1185.	2.8	55
236	ELAC2, a putative prostate cancer susceptibility gene product, potentiates TGF-β/Smad-induced growth arrest of prostate cells. Oncogene, 2006, 25, 5591-5600.	5.9	55
237	Elevated transforming growth factor β and mitogen-activated protein kinase pathways mediate fibrotic traits of Dupuytren's disease fibroblasts. Fibrogenesis and Tissue Repair, 2011, 4, 14.	3.4	55
238	Tgfβ/Alk5 signaling is required for shear stress induced klf2 expression in embryonic endothelial cells. Developmental Dynamics, 2011, 240, 1670-1680.	1.8	55
239	Transforming Growth Factor Î ² Signaling in Colorectal Cancer Cells With Microsatellite Instability Despite Biallelic Mutations in TGFBR2. Gastroenterology, 2015, 148, 1427-1437.e8.	1.3	55
240	Immunotherapeutic Potential of TGF-Î ² Inhibition and Oncolytic Viruses. Trends in Immunology, 2020, 41, 406-420.	6.8	55
241	Expression of Transforming Growth Factor-β1, Activin A, and Their Receptors in Thyroid Follicle Cells: Negative Regulation of Thyrocyte Growth and Function1. Endocrinology, 1999, 140, 4300-4310.	2.8	54
242	Two novel type II receptors mediate BMP signalling and are required to establish left–right asymmetry in zebrafish. Developmental Biology, 2008, 315, 55-71.	2.0	54
243	Ski coâ€repressor complexes maintain the basal repressed state of the TGFâ€Î² target gene, <i>SMAD7</i> , via HDAC3 and PRMT5. Genes To Cells, 2009, 14, 17-28.	1.2	54
244	Molecular analyses of the 15q and 18qSMAD genes in pancreatic cancer. , 1999, 24, 62-71.		53
245	Transforming growth factor-β-mediated mast cell migration depends on mitogen-activated protein kinase activity. Cellular Signalling, 2001, 13, 483-490.	3.6	53
246	Epigenetic Reprogramming of TGF-Î ² Signaling in Breast Cancer. Cancers, 2019, 11, 726.	3.7	53
247	An assay for the determination of biologically active bone morphogenetic proteins using cells transfected with an inhibitor of differentiation promoter-luciferase construct. Analytical Biochemistry, 2006, 349, 78-86.	2.4	52
248	BMP-7 inhibits TGF-β-induced invasion of breast cancer cells through inhibition of integrin β3 expression. Cellular Oncology (Dordrecht), 2012, 35, 19-28.	4.4	52
249	TGF-β Family Signaling Pathways in Cellular Dormancy. Trends in Cancer, 2019, 5, 66-78.	7.4	52
250	TGFÎ ² and EGF signaling orchestrates the AP-1- and p63 transcriptional regulation of breast cancer invasiveness. Oncogene, 2020, 39, 4436-4449.	5.9	52
251	Anti-Sclerostin Antibody Inhibits Internalization of Sclerostin and Sclerostin-Mediated Antagonism of Wnt/LRP6 Signaling. PLoS ONE, 2013, 8, e62295.	2.5	51
252	A Rate Equation Approach to Elucidate the Kinetics and Robustness of the TGF-β Pathway. Biophysical Journal, 2006, 91, 4368-4380.	0.5	50

#	Article	IF	CITATIONS
253	Smad7 and protein phosphatase 1alpha are critical determinants in the duration of TGF-beta/ALK1 signaling in endothelial cells. BMC Cell Biology, 2006, 7, 16.	3.0	50
254	Vanilloid Receptor-1 Regulates Neurogenic Inflammation in Colon and Protects Mice from Colon Cancer. Cancer Research, 2012, 72, 1705-1716.	0.9	50
255	Cloning and Characterization of p70S6KβDefines a Novel Family of p70 S6 Kinases. Biochemical and Biophysical Research Communications, 1998, 253, 470-476.	2.1	49
256	The Orphan Receptor Serine/Threonine Kinase ALK7 Signals Arrest of Proliferation and Morphological Differentiation in a Neuronal Cell Line. Journal of Biological Chemistry, 2001, 276, 5140-5146.	3.4	49
257	TCFβ1-induced SMAD2/3 and SMAD1/5 phosphorylation are both ALK5-kinase-dependent in primary chondrocytes and mediated by TAK1 kinase activity. Arthritis Research and Therapy, 2017, 19, 112.	3.5	49
258	Regulation of the levels of three transforming growth factor Î ² mRNAs by estrogen and their effects on the proliferation of human breast cancer cells. Molecular and Cellular Endocrinology, 1993, 97, 115-123.	3.2	47
259	CSK3β inactivation induces apoptosis of leukemia cells by repressing the function of c-Myb. Molecular Biology of the Cell, 2011, 22, 3533-3540.	2.1	47
260	LRP8 mediates Wnt/β-catenin signaling and controls osteoblast differentiation. Journal of Bone and Mineral Research, 2012, 27, 2065-2074.	2.8	47
261	Activin Receptor-like Kinase 1 Ligand Trap Reduces Microvascular Density and Improves Chemotherapy Efficiency to Various Solid Tumors. Clinical Cancer Research, 2016, 22, 96-106.	7.0	47
262	Development of a 96-well plate sample preparation method for integrated <i>N</i> - and <i>O</i> -glycomics using porous graphitized carbon liquid chromatography-mass spectrometry. Molecular Omics, 2020, 16, 355-363.	2.8	47
263	Transient Disruption of Autocrine TGF-Î ² Signaling Leads to Enhanced Survival and Proliferation Potential in Single Primitive Human Hemopoietic Progenitor Cells. Journal of Immunology, 2002, 168, 755-762.	0.8	46
264	Fas-associated factor 1 antagonizes Wnt signaling by promoting Î ² -catenin degradation. Molecular Biology of the Cell, 2011, 22, 1617-1624.	2.1	46
265	Small-Molecule Activity-Based Probe for Monitoring Ubiquitin C-Terminal Hydrolase L1 (UCHL1) Activity in Live Cells and Zebrafish Embryos. Journal of the American Chemical Society, 2020, 142, 16825-16841.	13.7	46
266	Key role for ubiquitin protein modification in TGFÎ ² signal transduction. Upsala Journal of Medical Sciences, 2012, 117, 153-165.	0.9	45
267	dSmurf Selectively Degrades Decapentaplegic-activated MAD, and Its Overexpression Disrupts Imaginal Disc Development. Journal of Biological Chemistry, 2003, 278, 26307-26310.	3.4	44
268	SLUG Is Expressed in Endothelial Cells Lacking Primary Cilia to Promote Cellular Calcification. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 616-627.	2.4	44
269	<scp>USP</scp> 4 inhibits <scp>SMAD</scp> 4 monoubiquitination and promotes activin and <scp>BMP</scp> signaling. EMBO Journal, 2017, 36, 1623-1639.	7.8	44
270	c-Met activation leads to the establishment of a TGFÎ ² -receptor regulatory network in bladder cancer progression. Nature Communications, 2019, 10, 4349.	12.8	44

#	Article	IF	CITATIONS
271	Functional antagonism between activin and osteogenic protein-1 in human embryonal carcinoma cells. , 1999, 180, 141-149.		43
272	The activities of Smad and Gli mediated signalling pathways in high-grade conventional osteosarcoma. European Journal of Cancer, 2012, 48, 3429-3438.	2.8	43
273	cDNA cloning, expression studies and chromosome mapping of human type I serine/threonine kinase receptor ALK7 (ACVR1C). Cytogenetic and Genome Research, 2001, 95, 157-162.	1.1	42
274	A Covalently Dimerized Recombinant Human Bone Morphogenetic Protein-15 Variant Identifies Bone Morphogenetic Protein Receptor Type 1B as a Key Cell Surface Receptor on Ovarian Granulosa Cells. Endocrinology, 2012, 153, 1509-1518.	2.8	42
275	MicroRNA-155 Functions as a Negative Regulator of RhoA Signaling in TGF-β-induced Endothelial to Mesenchymal Transition. MicroRNA (Shariqah, United Arab Emirates), 2012, 1, 2-10.	1.2	42
276	Genetic depletion and pharmacological targeting of $\hat{I}\pm v$ integrin in breast cancer cells impairs metastasis in zebrafish and mouse xenograft models. Breast Cancer Research, 2015, 17, 28.	5.0	42
277	Inhibition of Activin Signaling Slows Progression of Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2016, 27, 3589-3599.	6.1	42
278	Therapeutic targeting of TGF-β in cancer: hacking a master switch of immune suppression. Clinical Science, 2021, 135, 35-52.	4.3	42
279	SOST expression is restricted to the great arteries during embryonic and neonatal cardiovascular development. Developmental Dynamics, 2007, 236, 606-612.	1.8	41
280	Smad6 determines BMP-regulated invasive behaviour of breast cancer cells in a zebrafish xenograft model. Scientific Reports, 2016, 6, 24968.	3.3	41
281	Endoglin haploinsufficiency reduces radiation-induced fibrosis and telangiectasia formation in mouse kidneys. Radiotherapy and Oncology, 2009, 92, 484-491.	0.6	40
282	Dual exon skipping in myostatin and dystrophin for Duchenne muscular dystrophy. BMC Medical Genomics, 2011, 4, 36.	1.5	40
283	FAF1 phosphorylation by AKT accumulates TGF-β type II receptor and drives breast cancer metastasis. Nature Communications, 2017, 8, 15021.	12.8	40
284	Role of glycosylation in TGF-Î ² signaling and epithelial-to-mesenchymal transition in cancer. Protein and Cell, 2021, 12, 89-106.	11.0	40
285	Time-resolved dissection of early phosphoproteome and ensuing proteome changes in response to TGF-β. Science Signaling, 2014, 7, rs5.	3.6	39
286	Targeting tumour vasculature by inhibiting activin receptor-like kinase (ALK)1 function. Biochemical Society Transactions, 2016, 44, 1142-1149.	3.4	39
287	TGF-β1/ALK5-induced monocyte migration involves PI3K and p38 pathways and is not negatively affected by diabetes mellitus. Cardiovascular Research, 2011, 91, 510-518.	3.8	38
288	Shear induced collateral artery growth modulated by endoglin but not by <scp>ALK1</scp> . Journal of Cellular and Molecular Medicine, 2012, 16, 2440-2450.	3.6	38

#	Article	IF	CITATIONS
289	Expression of TGFÎ ² -family signalling components in ageing cartilage: age-related loss of TGFÎ ² and BMP receptors. Osteoarthritis and Cartilage, 2016, 24, 1235-1245.	1.3	38
290	Distribution of phosphorylated Smad2 identifies target tissues of TGFβ ligands in mouse development. Gene Expression Patterns, 2003, 3, 355-360.	0.8	37
291	Endoglin for tumor imaging and targeted cancer therapy. Expert Opinion on Therapeutic Targets, 2013, 17, 421-435.	3.4	37
292	Current perspectives on inhibitory SMAD7 in health and disease. Critical Reviews in Biochemistry and Molecular Biology, 2020, 55, 691-715.	5.2	37
293	Overactive bone morphogenetic protein signaling in heterotopic ossification and Duchenne muscular dystrophy. Cellular and Molecular Life Sciences, 2013, 70, 407-423.	5.4	36
294	Nerve growth factor mediates activation of the Smad pathway in PC12 cells. FEBS Journal, 2004, 271, 920-931.	0.2	35
295	Molecular Characterization of Transforming Growth Factor Type ?3. Annals of the New York Academy of Sciences, 1990, 593, 26-42.	3.8	34
296	Temporal Smad7 Transgene Induction in Mouse Epidermis Accelerates Skin Wound Healing. American Journal of Pathology, 2011, 179, 1768-1779.	3.8	34
297	TGF-Î ² in aging and disease. Cell and Tissue Research, 2012, 347, 5-9.	2.9	34
298	ALK2 mutation in a patient with Down's syndrome and a congenital heart defect. European Journal of Human Genetics, 2011, 19, 389-393.	2.8	33
299	BMP antagonists enhance myogenic differentiation and ameliorate the dystrophic phenotype in a DMD mouse model. Neurobiology of Disease, 2011, 41, 353-360.	4.4	33
300	Activin receptor-like kinase 1 as a target for anti-angiogenesis therapy. Expert Opinion on Investigational Drugs, 2013, 22, 1371-1383.	4.1	33
301	Inhibition of TGFÎ ² type I receptor activity facilitates liver regeneration upon acute CCl4 intoxication in mice. Archives of Toxicology, 2016, 90, 347-357.	4.2	33
302	SUMO-triggered ubiquitination of NR4A1 controls macrophage cell death. Cell Death and Differentiation, 2017, 24, 1530-1539.	11.2	33
303	Bone morphogenetic protein type IB receptor is progressively expressed in malignant glioma tumours. British Journal of Cancer, 1996, 73, 624-629.	6.4	32
304	Immunohistochemical detection of activin A, follistatin, and activin receptors during fracture healing in the rat. Journal of Orthopaedic Research, 1998, 16, 314-321.	2.3	32
305	Fas-associated Factor 1 Is a Scaffold Protein That Promotes Î ² -Transducin Repeat-containing Protein (β-TrCP)-mediated β-Catenin Ubiquitination and Degradation. Journal of Biological Chemistry, 2012, 287, 30701-30710.	3.4	32
306	GREM1 is associated with metastasis and predicts poor prognosis in ER-negative breast cancer patients. Cell Communication and Signaling, 2019, 17, 140.	6.5	32

#	Article	IF	CITATIONS
307	Transforming Growth Factor (TGF-β)-specific Signaling by Chimeric TGF-β Type II Receptor with Intracellular Domain of Activin Type IIB Receptor. Journal of Biological Chemistry, 1997, 272, 21187-21194.	3.4	31
308	Bone Morphogenetic Protein 9 Protects against Neonatal Hyperoxia-Induced Impairment of Alveolarization and Pulmonary Inflammation. Frontiers in Physiology, 2017, 8, 486.	2.8	31
309	Endothelium-derived stromal cells contribute to hematopoietic bone marrow niche formation. Cell Stem Cell, 2021, 28, 653-670.e11.	11.1	31
310	Antisense-Oligonucleotide Mediated Exon Skipping in Activin-Receptor-Like Kinase 2: Inhibiting the Receptor That Is Overactive in Fibrodysplasia Ossificans Progressiva. PLoS ONE, 2013, 8, e69096.	2.5	30
311	Autophagy contributes to BMP type 2 receptor degradation andÂdevelopment of pulmonary arterial hypertension. Journal of Pathology, 2019, 249, 356-367.	4.5	30
312	Regulation of the TGF-β pathway by deubiquitinases in cancer. International Journal of Biochemistry and Cell Biology, 2016, 76, 135-145.	2.8	29
313	Invasive Behavior of Human Breast Cancer Cells in Embryonic Zebrafish. Journal of Visualized Experiments, 2017, , .	0.3	29
314	Latent transforming growth factor- <i>β</i> complex in Chinese hamster ovary cells contains the multifunctional cysteine-rich fibroblast growth factor receptor, also termed E-selectin-ligand or MG-160. Biochemical Journal, 1997, 324, 427-434.	3.7	28
315	Key signaling nodes in mammary gland development and cancer: Smad signal integration in epithelial cell plasticity. Breast Cancer Research, 2012, 14, 204.	5.0	28
316	Disorganised stroma determined on preâ€ŧreatment breast cancer biopsies is associated with poor response to neoadjuvant chemotherapy: Results from the NEOZOTAC trial. Molecular Oncology, 2015, 9, 1120-1128.	4.6	28
317	Delta-Like Ligand 4 Modulates Liver Damage by Down-Regulating Chemokine Expression. American Journal of Pathology, 2016, 186, 1874-1889.	3.8	28
318	Combinatorial Therapeutic Approaches with Nanomaterial-Based Photodynamic Cancer Therapy. Pharmaceutics, 2022, 14, 120.	4.5	28
319	Methylation of Smad6 by protein arginineN-methyltransferase 1. FEBS Letters, 2006, 580, 6603-6611.	2.8	27
320	Fluid shear stress-induced TGF-β/ALK5 signaling in renal epithelial cells is modulated by MEK1/2. Cellular and Molecular Life Sciences, 2017, 74, 2283-2298.	5.4	27
321	Mutational Analysis of Sclerostin Shows Importance of the Flexible Loop and the Cystine-Knot for Wnt-Signaling Inhibition. PLoS ONE, 2013, 8, e81710.	2.5	27
322	TGFβ Activates Mitogen- and Stress-activated Protein Kinase-1 (MSK1) to Attenuate Cell Death*. Journal of Biological Chemistry, 2011, 286, 5003-5011.	3.4	26
323	Targeting TGF-β Signaling by Antisense Oligonucleotide-mediated Knockdown of TGF-β Type I Receptor. Molecular Therapy - Nucleic Acids, 2014, 3, e156.	5.1	26
324	The high affinity ALK1-ligand BMP9 induces a hypertrophy-like state in chondrocytes that is antagonized by TGFÎ21. Osteoarthritis and Cartilage, 2015, 23, 985-995.	1.3	26

#	Article	IF	CITATIONS
325	Bone morphogenetic protein 9 as a key regulator of liver progenitor cells in <scp>DDC</scp> â€induced cholestatic liver injury. Liver International, 2018, 38, 1664-1675.	3.9	26
326	Development of Macrocycle Kinase Inhibitors for ALK2 Using Fibrodysplasia Ossificans Progressivaâ€Đerived Endothelial Cells. JBMR Plus, 2019, 3, e10230.	2.7	26
327	Mechanotransduction is a context-dependent activator of TGF-β signaling in mesenchymal stem cells. Biomaterials, 2020, 259, 120331.	11.4	26
328	Microfluidics meets 3D cancer cell migration. Trends in Cancer, 2022, 8, 683-697.	7.4	26
329	Lack of responsiveness to TGF-β1 in a thyroid carcinoma cell line with functional type I and type II TGF-β receptors and Smad proteins, suggests a novel mechanism for TGF-β insensitivity in carcinoma cells. Molecular and Cellular Endocrinology, 1999, 153, 79-90.	3.2	25
330	Phosphorylation of Smad Signaling Proteins by Receptor Serine/Threonine Kinases. , 2001, 124, 107-120.		25
331	Transforming Growth Factor \hat{I}^2 and Wound Healing in Human Cholesteatoma. Laryngoscope, 2008, 118, 94-98.	2.0	25
332	Smad3 Is a Key Nonredundant Mediator of Transforming Growth Factor Î ² Signaling in Nme Mouse Mammary Epithelial Cells. Molecular Cancer Research, 2009, 7, 1342-1353.	3.4	25
333	TMED10 Protein Interferes with Transforming Growth Factor (TGF)-β Signaling by Disrupting TGF-β Receptor Complex Formation. Journal of Biological Chemistry, 2017, 292, 4099-4112.	3.4	25
334	Prevention of progression of pulmonary hypertension by the Nur77 agonist 6-mercaptopurine: role of BMP signalling. European Respiratory Journal, 2019, 54, 1802400.	6.7	25
335	Characterization of a 60-kDa cell surface-associated transforming growth factor-β binding protein that can interfere with transforming growth factor-β receptor binding. Journal of Cellular Physiology, 1997, 173, 447-459.	4.1	24
336	Spheroid Assay to Measure TGF- \hat{l}^2 -induced Invasion. Journal of Visualized Experiments, 2011, , .	0.3	24
337	Role of Endoglin in Fibrosis and Scleroderma. International Review of Cell and Molecular Biology, 2012, 297, 295-308.	3.2	24
338	Novel Ex Vivo Culture Method for the Study of Dupuytren's Disease: Effects of TGFβ Type 1 Receptor Modulation by Antisense Oligonucleotides. Molecular Therapy - Nucleic Acids, 2014, 3, e142.	5.1	24
339	New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration. FASEB Journal, 2017, 31, 238-255.	0.5	24
340	TGFâ $€$ \hat{i}^2 signaling in liver metastasis. Clinical and Translational Medicine, 2020, 10, e160.	4.0	23
341	Characterization of the binding of transforming growth factor-beta 1, - beta 2, and -beta 3 to recombinant beta 1-latency-associated peptide. Molecular Endocrinology, 1992, 6, 694-702.	3.7	22
342	Orthotopic ossification of the spinal ligaments of zucker fatty rats: A possible animal model for ossification of the human posterior longitudinal ligament. Journal of Orthopaedic Research, 1997, 15, 820-829.	2.3	22

#	Article	IF	CITATIONS
343	Engagement of activin and bone morphogenetic protein signaling pathway Smad proteins in the induction of inhibin B production in ovarian granulosa cells. Molecular and Cellular Endocrinology, 2002, 195, 79-88.	3.2	22
344	Wild-type p53 inhibits pro-invasive properties of TGF-β3 in breast cancer, in part through regulation of EPHB2, a new TGF-β target gene. Breast Cancer Research and Treatment, 2014, 148, 7-18.	2.5	22
345	Fibulin-4 deficiency increases TGF-β signalling in aortic smooth muscle cells due to elevated TGF-β2 levels. Scientific Reports, 2015, 5, 16872.	3.3	22
346	A Rat Pituitary Tumor Cell Line (GH3) Expresses Type I and Type II Receptors and Other Cell Surface Binding Protein(s) for Transforming Growth Factor- β. Journal of Biological Chemistry, 1995, 270, 770-774.	3.4	21
347	In Situ Proximity Ligation Detection of c-Jun/AP-1 Dimers Reveals Increased Levels of c-Jun/Fra1 Complexes in Aggressive Breast Cancer Cell Lines in Vitro and in Vivo. Molecular and Cellular Proteomics, 2010, 9, 1982-1990.	3.8	21
348	Designed nanomolar small-molecule inhibitors of Ena/VASP EVH1 interaction impair invasion and extravasation of breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29684-29690.	7.1	21
349	Assignment ¹ of the Smad7 gene (MADH7) to human chromosome 18q21.1 by fluorescence in situ hybridization. Cytogenetic and Genome Research, 1998, 81, 189-190.	1.1	20
350	Expression of the inhibitory Smad7 in early mouse development and upregulation during embryonic vasculogenesis. Developmental Dynamics, 2000, 218, 663-670.	1.8	20
351	Correlation between ALK-6 (BMPR-IB) Distribution and Responsiveness to Osteogenic Protein-1 (BMP-7) in Embryonic Mouse Bone Rudiments. Growth Factors, 2000, 17, 177-192.	1.7	20
352	Immunohistochemical Localization of Osteogenetic Protein (OP-1) and Its Receptors in Rabbit Articular Cartilage. Journal of Histochemistry and Cytochemistry, 2002, 50, 1341-1349.	2.5	20
353	Role of TGF- & amp; #946; in the Tumor Stroma. Current Cancer Drug Targets, 2008, 8, 466-472.	1.6	20
354	5-Aminosalicylic acid inhibits TGF-β1 signalling in colorectal cancer cells. Cancer Letters, 2010, 287, 82-90.	7.2	20
355	A current perspective on applications of macrocyclicâ€peptideâ€based highâ€affinity ligands. Biopolymers, 2016, 106, 889-900.	2.4	20
356	Tacrolimus-Induced BMP/SMAD Signaling Associates With Metabolic Stress–Activated FOXO1 to Trigger β-Cell Failure. Diabetes, 2020, 69, 193-204.	0.6	20
357	Fish tales: The use of zebrafish xenograft human cancer cell models. Histology and Histopathology, 2017, 32, 673-686.	0.7	20
358	<scp>USP8</scp> promotes cancer progression and extracellular vesicleâ€mediated <scp>CD8</scp> + T cell exhaustion by deubiquitinating the <scp>TGF</scp> â€i² receptor <scp>TβRII</scp> . EMBO Journal, 2022, 41, .	7.8	20
359	Characterization of in Vivo Phosphorylation of Activin Type II Receptor. Biochemical and Biophysical Research Communications, 1993, 194, 1508-1514.	2.1	19
360	Poor vessel formation in embryos from knock-in mice expressing ALK5 with L45 loop mutation defective in Smad activation. Laboratory Investigation, 2009, 89, 800-810.	3.7	19

#	Article	IF	CITATIONS
361	Soluble fms-like tyrosine kinase 1 and soluble endoglin are elevated circulating anti-angiogenic factors in pre-eclampsia. Pregnancy Hypertension, 2012, 2, 358-367.	1.4	19
362	Regulation of endothelial barrier function by TGFâ€Î² type I receptor ALK5: Potential role of contractile mechanisms and heat shock protein 90. Journal of Cellular Physiology, 2012, 227, 759-771.	4.1	19
363	14-3-3ζ Turns TGF-β to the Dark Side. Cancer Cell, 2015, 27, 151-153.	16.8	18
364	Clinical Utility Gene Card for: Fibrodysplasia ossificans progressiva. European Journal of Human Genetics, 2015, 23, 1431-1431.	2.8	18
365	E3 Ubiquitin Ligases: Key Regulators of TGFβ Signaling in Cancer Progression. International Journal of Molecular Sciences, 2021, 22, 476.	4.1	18
366	TGF-β-Induced Endothelial to Mesenchymal Transition Is Determined by a Balance Between SNAIL and ID Factors. Frontiers in Cell and Developmental Biology, 2021, 9, 616610.	3.7	18
367	Mutational activation of BRAF confers sensitivity to transforming growth factor beta inhibitors in human cancer cells. Oncotarget, 2016, 7, 81995-82012.	1.8	18
368	Expression of TGF-beta related Smad proteins in human epithelial skin tumors International Journal of Oncology, 1999, 14, 1049-56.	3.3	17
369	Hepatocyte-specific Smad7 deletion accelerates DEN-induced HCC via activation of STAT3 signaling in mice. Oncogenesis, 2017, 6, e294-e294.	4.9	17
370	Reactivation of BMP signaling by suboptimal concentrations of MEK inhibitor and FK506 reduces organ-specific breast cancer metastasis. Cancer Letters, 2020, 493, 41-54.	7.2	17
371	Wnt/β-catenin signaling changes C2C12 myoblast proliferation and differentiation by inducing Id3 expression. Biochemical and Biophysical Research Communications, 2012, 419, 83-88.	2.1	16
372	Secreted BMP antagonists and their role in cancer and bone metastases. Bone, 2020, 137, 115455.	2.9	16
373	Differential O- and Glycosphingolipid Glycosylation in Human Pancreatic Adenocarcinoma Cells With Opposite Morphology and Metastatic Behavior. Frontiers in Oncology, 2020, 10, 732.	2.8	16
374	A comprehensive enhancer screen identifies TRAM2 as a key and novel mediator of YAP oncogenesis. Genome Biology, 2021, 22, 54.	8.8	16
375	CD161 expression and regulation defines rapidly responding effector CD4+ T cells associated with improved survival in HPV16-associated tumors. , 2022, 10, e003995.		16
376	RLP, a novel Ras-like protein, is an immediate-early transforming growth factor-β (TGF-β) target gene that negatively regulates transcriptional activity induced by TGF-β. Biochemical Journal, 2004, 383, 187-199.	3.7	15
377	Smad2 Phosphorylation in Diabetic Kidney Tubule Epithelial Cells Is Associated with Modulation of Several Transforming Growth Factor-Î ² Family Members. Nephron, 2017, 135, 291-306.	1.8	15
378	Fibrodysplasia Ossificans Progressiva: What Have We Achieved and Where Are We Now? Follow-up to the 2015 Lorentz Workshop. Frontiers in Endocrinology, 2021, 12, 732728.	3.5	15

#	Article	IF	CITATIONS
379	OVOL1 inhibits breast cancer cell invasion by enhancing the degradation of TGF-β type I receptor. Signal Transduction and Targeted Therapy, 2022, 7, 126.	17.1	15
380	Follistatin ontrolled activinâ€HNF4α oagulation factor axis in liver progenitor cells determines outcome of acute liver failure. Hepatology, 2022, 75, 322-337.	7.3	14
381	Expression of Transforming Growth Factor-Â1, Activin A, and Their Receptors in Thyroid Follicle Cells: Negative Regulation of Thyrocyte Growth and Function. Endocrinology, 1999, 140, 4300-4310.	2.8	14
382	An anchor for activation. Nature, 1999, 397, 109-111.	27.8	13
383	Chromosomal localization of three human genes encoding bone morphogenetic protein receptors. Mammalian Genome, 1999, 10, 299-302.	2.2	13
384	Ectopic expression of Smad7 inhibits transforming growth factor-β responses in vascular smooth muscle cells. Life Sciences, 2001, 69, 2641-2652.	4.3	13
385	Smad protein and TGF-β signaling in vascular smooth muscle cells. International Journal of Molecular Medicine, 2003, 11, 645.	4.0	12
386	SMAD destruction turns off signalling. Nature Cell Biology, 1999, 1, E195-E197.	10.3	11
387	Activin A induces a non-fibrotic phenotype in smooth muscle cells in contrast to TGF-β. Experimental Cell Research, 2011, 317, 131-142.	2.6	11
388	Interrogating TGF-Î ² Function and Regulation in Endothelial Cells. Methods in Molecular Biology, 2016, 1344, 193-203.	0.9	11
389	JNK-Dependent cJun Phosphorylation Mitigates TGFβ- and EGF-Induced Pre-Malignant Breast Cancer Cell Invasion by Suppressing AP-1-Mediated Transcriptional Responses. Cells, 2019, 8, 1481.	4.1	11
390	Cripto favors chondrocyte hypertrophy via <scp>TGF</scp> â€ŀ² <scp>SMAD1</scp> /5 signaling during development of osteoarthritis. Journal of Pathology, 2021, 255, 330-342.	4.5	11
391	Studying TGF-β Signaling and TGF-β-induced Epithelial-to-mesenchymal Transition in Breast Cancer and Normal Cells. Journal of Visualized Experiments, 2020, , .	0.3	11
392	Vascular defects associated with hereditary hemorrhagic telangiectasia revealed in patient-derived isogenic iPSCs in 3D vessels on chip. Stem Cell Reports, 2022, 17, 1536-1545.	4.8	11
393	Bone morphogenetic protein signalling in NGF-stimulated PC12 cells. Biochemical and Biophysical Research Communications, 2003, 307, 632-639.	2.1	10
394	VprBP mitigates TGF-β and Activin signaling by promoting Smurf1-mediated type I receptor degradation. Journal of Molecular Cell Biology, 2020, 12, 138-151.	3.3	10
395	A Signaling Crosstalk between BMP9 and HGF/c-Met Regulates Mouse Adult Liver Progenitor Cell Survival. Cells, 2020, 9, 752.	4.1	10
396	Towards a cure for Fibrodysplasia ossificans progressiva. Annals of Translational Medicine, 2016, 4, S28-S28.	1.7	10

#	Article	IF	CITATIONS
397	Chromosomal localization of three human genes encoding members of the TGF-β superfamily of type I serine/threonine kinase receptors. Mammalian Genome, 1998, 9, 266-268.	2.2	9
398	Breast cancer dormancy is associated with a 4NG1 state and not senescence. Npj Breast Cancer, 2021, 7, 140.	5.2	9
399	TRAF4 Inhibits Bladder Cancer Progression by Promoting BMP/SMAD Signaling. Molecular Cancer Research, 2022, 20, 1516-1531.	3.4	9
400	Heterozygous disruption of activin receptor-like kinase 1 is associated with increased arterial pressure. DMM Disease Models and Mechanisms, 2015, 8, 1427-39.	2.4	8
401	Challenges and Opportunities for Drug Repositioning in Fibrodysplasia Ossificans Progressiva. Biomedicines, 2021, 9, 213.	3.2	8
402	Inhibition of the prolyl isomerase Pin1 improves endothelial function and attenuates vascular remodelling in pulmonary hypertension by inhibiting TGF-β signalling. Angiogenesis, 2022, 25, 99-112.	7.2	8
403	The protein kinase LKB1 promotes selfâ€renewal and blocks invasiveness in glioblastoma. Journal of Cellular Physiology, 2022, 237, 743-762.	4.1	8
404	Regulatory RNAs controlling vascular (dys)function by affecting TGF-ß family signalling. EXCLI Journal, 2015, 14, 832-50.	0.7	8
405	Photodynamic Therapy in Combination with the Hepatitis B Core Virus-like Particles (HBc VLPs) to Prime Anticancer Immunity for Colorectal Cancer Treatment. Cancers, 2022, 14, 2724.	3.7	8
406	Disparate phospho-Smad2 levels in advanced type 2 diabetes patients with diabetic nephropathy and early experimental db/db mouse model. Renal Failure, 2017, 39, 629-642.	2.1	7
407	Generation of Fibrodysplasia ossificans progressiva and control integration free iPSC lines from periodontal ligament fibroblasts. Stem Cell Research, 2019, 41, 101639.	0.7	7
408	Cercosporamide inhibits bone morphogenetic protein receptor type I kinase activity in zebrafish. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	7
409	Metabolic Reprogramming of Mammary Epithelial Cells during TGF-β-Induced Epithelial-to-Mesenchymal Transition. Metabolites, 2021, 11, 626.	2.9	7
410	Determining TGF-Î ² Receptor Levels in the Cell Membrane. Methods in Molecular Biology, 2016, 1344, 35-47.	0.9	7
411	Dynamic Visualization of TGF-β/SMAD3 Transcriptional Responses in Single Living Cells. Cancers, 2022, 14, 2508.	3.7	7
412	Ter94/VCP Is a Novel Component Involved in BMP Signaling. PLoS ONE, 2014, 9, e114475.	2.5	6
413	In vivo imaging of TGFβ signalling components using positron emission tomography. Drug Discovery Today, 2019, 24, 2258-2272.	6.4	6
414	Control of bone formation by osteocytes? lessons from the rare skeletal disorders sclerosteosis and van Buchem disease. BoneKEy Osteovision, 2005, 2, 33-38.	0.6	6

#	Article	IF	CITATIONS
415	RNF12 is regulated by AKT phosphorylation and promotes TGF-β driven breast cancer metastasis. Cell Death and Disease, 2022, 13, 44.	6.3	6
416	Crystal structures of BMPRII extracellular domain in binary and ternary receptor complexes with BMP10. Nature Communications, 2022, 13, 2395.	12.8	6
417	Eccrine Sweat Glands: Expression of Transforming Growth Factor-beta and Bone Morphogenetic Protein Type I Receptors and Their Intracellular Signalling Smad Proteins. Acta Dermato-Venereologica, 1999, 79, 183-186.	1.3	5
418	TGF-β-mediated Endothelial to Mesenchymal Transition (EndMT) and the Functional Assessment of EndMT Effectors using CRISPR/Cas9 Gene Editing. Journal of Visualized Experiments, 2021, , .	0.3	5
419	Bone morphogenetic protein receptors and their nuclear effectors in bone formation. , 2002, , 31-60.		5
420	The polarity protein Par3 coordinates positively self-renewal and negatively invasiveness in glioblastoma. Cell Death and Disease, 2021, 12, 932.	6.3	5
421	TGFβ selects for proâ€stemness over proâ€invasive phenotypes during cancer cell epithelial–mesenchymal transition. Molecular Oncology, 2022, 16, 2330-2354.	4.6	5
422	ALK1 controls hepatic vessel formation, angiodiversity, and angiocrine functions in hereditary hemorrhagic telangiectasia of the liver. Hepatology, 2023, 77, 1211-1227.	7.3	5
423	Deregulated Bone Morphogenetic Protein Receptor Signaling Underlies Fibrodysplasia Ossificans Progressiva. Current Pharmaceutical Design, 2012, 18, 4087-4092.	1.9	4
424	TGF-β signaling in Duchenne muscular dystrophy. Future Neurology, 2012, 7, 209-224.	0.5	4
425	Generation of non-standard macrocyclic peptides specifically binding TSC-22 homologous gene-1. Biochemical and Biophysical Research Communications, 2019, 516, 445-450.	2.1	4
426	THG-1 suppresses SALL4 degradation to induce stemness genes and tumorsphere formation through antagonizing NRBP1 in squamous cell carcinoma cells. Biochemical and Biophysical Research Communications, 2020, 523, 307-314.	2.1	4
427	An Experimental Liver Metastasis Mouse Model Suitable for Short and Longâ€Term Intravital Imaging. Current Protocols, 2021, 1, e116.	2.9	4
428	Inhibiting Endothelial Cell Function in Normal and Tumor Angiogenesis Using BMP Type I Receptor Macrocyclic Kinase Inhibitors. Cancers, 2021, 13, 2951.	3.7	4
429	Transforming growth factor-β challenge alters the N-, O-, andÂglycosphingolipid glycomes in PaTu-S pancreatic adenocarcinoma cells. Journal of Biological Chemistry, 2022, 298, 101717.	3.4	4
430	A Programmable Multifunctional 3D Cancer Cell Invasion Micro Platform. Small, 2022, 18, e2107757.	10.0	4
431	Measurement of Constitutive Activity of BMP Type I Receptors. Methods in Enzymology, 2010, 484, 281-293.	1.0	3
432	Signal Transduction: Gain of Activin Turns Muscle into Bone. Current Biology, 2015, 25, R1136-R1138.	3.9	3

#	Article	IF	CITATIONS
433	Bone Morphogenetic Proteins in the Initiation and Progression of Breast Cancer. , 2017, , 409-433.		3
434	ALK1Fc Suppresses the Human Prostate Cancer Growth in in Vitro and in Vivo Preclinical Models. Frontiers in Cell and Developmental Biology, 2017, 5, 104.	3.7	3
435	Bone morphogenetic protein receptors and their nuclear effectors in bone formation. , 2004, , 9-44.		3
436	Signal transduction mechanisms for members of the TGF- $\hat{1}^2$ family. , 2001, , 11-40.		3
437	Development of small macrocyclic kinase inhibitors. Future Medicinal Chemistry, 2022, 14, 389-391.	2.3	3
438	Visualizing Dynamic Changes During TGF-Î ² -Induced Epithelial to Mesenchymal Transition. Methods in Molecular Biology, 2022, 2488, 47-65.	0.9	3
439	Low Transforming Growth Factor-β Pathway Activity in Cervical Adenocarcinomas. Frontiers in Oncology, 0, 12, .	2.8	3
440	279 BONE MORPHOGENETIC PROTEIN (BMP)-9: A NEW MEMBER OF THE TGF-Î ² SUPERFAMILY WHICH IS SECRETED BY ACTIVATED HEPATIC STELLATE CELLS. Journal of Hepatology, 2009, 50, S110.	3.7	2
441	Integration of transcriptional signals at the tumor cell invasive front. Cell Cycle, 2010, 9, 2491-2501.	2.6	2
442	Biphasic Role of TGF-β in Cancer Progression: From Tumor Suppressor to Tumor Promotor. , 2018, , 455-455.		2
443	MnTBAP Reverses Pulmonary Vascular Remodeling and Improves Cardiac Function in Experimentally Induced Pulmonary Arterial Hypertension. International Journal of Molecular Sciences, 2020, 21, 4130.	4.1	2
444	Expression of transformingâ€growthâ€factor (TGF)â€Î² receptors and Smad proteins in glioblastoma cell lines with distinct responses to TGFâ€Î²1. International Journal of Cancer, 1999, 80, 756-763.	5.1	2
445	FK-506 (Tacrolimus), Identified In A High Throughput Screen To Increase Bmprii Signaling, Prevents Pulmonary Arterial Hypertension (PAH) In Mice With Endothelial Bmprii Deletion. , 2011, , .		1
446	RNF12 Controls Embryonic Stem Cell Fate and Morphogenesis in Zebrafish Embryos by Targeting Smad7 for Degradation. Molecular Cell, 2012, 47, 330.	9.7	1
447	TGF-β and Cardiovascular Disorders. , 2013, , 297-322.		1
448	Identification of enhancers of BMP signaling pathway with cartilage anabolic properties. Osteoarthritis and Cartilage, 2013, 21, S288.	1.3	1
449	Emerging regulators of BMP bioavailability. Bone, 2016, 93, 220-221.	2.9	1
450	Fine-tuning ALK1 linear polyubiquitination to control angiogenesis. Trends in Cell Biology, 2021, 31, 705-707.	7.9	1

#	Article	IF	CITATIONS
451	Transforming Growth Factor- \hat{l}^2 Receptors and Signal Transduction. , 1997, , 277-284.		1
452	Assessment of Functional Competence of Endothelial Cells from Human Pluripotent Stem Cells in Zebrafish Embryos. Methods in Molecular Biology, 2014, 1213, 107-119.	0.9	1
453	Abstract 1370: Activin receptor-like kinase 1 ligand trap reduces microvascular density and improves chemotherapy efficiency to various solid tumors. , 2015, , .		1
454	Controlling Smad4 signaling with a Wip. EMBO Reports, 2020, 21, e50246.	4.5	1
455	Establishment of Embryonic Zebrafish Xenograft Assays to Investigate TGF-β Family Signaling in Human Breast Cancer Progression. Methods in Molecular Biology, 2022, 2488, 67-80.	0.9	1
456	Synthesis and preclinical evaluation of [11C]LR111 and [18F]EW-7197 as PET tracers of the activin-receptor like kinase-5. Nuclear Medicine and Biology, 2022, 112-113, 9-19.	0.6	1
457	Identification of receptors and Smad proteins involved in activin signals in human epidermal keratinocytes. Journal of Dermatological Science, 1998, 16, S8.	1.9	0
458	SMAD3, SMAD4 and SMAD7 expression during murine hair follicle development and cycling. Journal of Dermatological Science, 1998, 16, S75.	1.9	0
459	Receptor Serine/Threonine Kinases. , 2004, , 174-180.		0
460	TMEPAI, a transmembrane TGF-β-inducible protein, sequesters Smad proteins in TGF-β signaling. Nature Precedings, 2007, , .	0.1	0
461	Cell regulation. Current Opinion in Cell Biology, 2007, 19, 109-111.	5.4	0
462	T.P.1.04 Dual exon skipping in myostatin and dystrophin as a potential therapy for Duchenne muscular dystrophy. Neuromuscular Disorders, 2009, 19, 577.	0.6	0
463	O.13 Interference of myostatin and TGF-beta signaling by antisense-mediated exon skipping in ALK4/5 receptors. Neuromuscular Disorders, 2011, 21, 704.	0.6	0
464	132 Non-synonymous SMAD6 mutations impaired inhibition of bmp signalling in patients with congenital cardiovascular malformation. Heart, 2011, 97, A75-A75.	2.9	0
465	19 HOW ARE HEPATOCYTES PRIMED FOR TGF-β MEDIATED APOPTOSIS? BONE MORPHOGENETIC PROTEIN (BMP)-9 AS DEADLY CO-FACTOR IN VITRO AND IN VIVO. Journal of Hepatology, 2012, 56, S9.	3.7	0
466	655 Studying TGF- Signaling Using a High Resolution, Quantitative Mass Spectrometric Approach. European Journal of Cancer, 2012, 48, S155.	2.8	0
467	Differential effects of bone morphogenetic protein 2 and 9 on chondroprotective transforming growth factor B signaling. Osteoarthritis and Cartilage, 2013, 21, S124.	1.3	0
468	P348Impaired macrophage polarization in endoglin haplo-insufficiency leading to defective tissue repair is recovered by counter balance the TGFbeta pathway. Cardiovascular Research, 2014, 103, S63.4-S63.	3.8	0

#	Article	IF	CITATIONS
469	P0430 : Delta like ligand 4 drives liver damage through regulating chemokines. Journal of Hepatology, 2015, 62, S474.	3.7	0
470	New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration. Neuromuscular Disorders, 2016, 26, S153.	0.6	0
471	A novel role for BMP9 as a negative regulator of oval cell-mediated regeneration in response to liver damage. Journal of Hepatology, 2017, 66, S365.	3.7	0
472	Endoglin as an Important Regulator of Colorectal Cancer Invasion and Metastasis. Gastroenterology, 2017, 152, S87.	1.3	0
473	141 Targeting TGFβ signaling in BRAF mutant melanoma. Journal of Investigative Dermatology, 2017, 137, S24.	0.7	0
474	Development of a patient-specific 3-Dimensional cell model to study right heart failure. Journal of Molecular and Cellular Cardiology, 2018, 120, 48.	1.9	0
475	DIPG-13. A NOVEL MOUSE MODEL REVEALS UNEXPECTED MECHANISMS OF ACTION OF ACVR1 MUTATIONS IN DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2019, 21, ii71-ii71.	1.2	0
476	TGF-β Signaling and Vascular Morphogenesis. , 2008, , 507-521.		0
477	Shear stress modulates TGFâ€beta signaling and EMT in endothelial cells. FASEB Journal, 2009, 23, 830.8.	0.5	0
478	Genetic and pharmacological targeting of activin receptor-like kinase 1 impairs tumor growth and angiogenesis. Journal of Cell Biology, 2010, 188, i1-i1.	5.2	0
479	Abstract 533: Shear-Induced Collateral Artery Growth Modulated by Endoglin but Not by ALK1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, .	2.4	0
480	Deficiency for endoglin in tumor vasculature weakens the endothelial barrier to metastatic dissemination. Journal of Cell Biology, 2013, 200, i10-i10.	5.2	0
481	Effects of ALK1Fc treatment on prostate cancer cells interacting with bone and bone cells in bone metastasis models Journal of Clinical Oncology, 2017, 35, e16576-e16576.	1.6	0
482	Bone morphogenetic protein 9 protects against neonatal hyperoxia-induced impairment of lung development, inflammation and fibrosis. , 2017, , .		0
483	MnTBAP reduces pulmonary vascular remodeling in experimental pulmonary arterial hypertension. , 2019, , .		0
484	TGF-β Pathway. , 2020, , 1-13.		0
485	Uncovering the deubiquitinase activity landscape of breast cancer. Oncoscience, 2020, 7, 85-87.	2.2	0
486	TGF-β Pathway. , 2021, , 1485-1497.		0

#	Article	IF	CITATIONS
487	Uncovering the deubiquitinase activity landscape of breast cancer. Oncoscience, 2020, 7, 85-87.	2.2	0
488	A Programmable Multifunctional 3D Cancer Cell Invasion Micro Platform (Small 20/2022). Small, 2022, 18, .	10.0	0