Oleg Rybak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5857644/publications.pdf Version: 2024-02-01

		758635	580395
26	2,437	12	25
papers	citations	h-index	g-index
33	33	33	3063
all docs	docs citations	times ranked	citing authors

OLEC RVBAK

#	Article	IF	CITATIONS
1	One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature, 2006, 444, 195-198.	13.7	1,111
2	Eemian interglacial reconstructed from a Greenland folded ice core. Nature, 2013, 493, 489-494.	13.7	565
3	Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP. Cryosphere, 2012, 6, 573-588.	1.5	191
4	Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison. Journal of Glaciology, 2013, 59, 410-422.	1.1	179
5	"EDML1": a chronology for the EPICA deep ice core from Dronning Maud Land, Antarctica, over the last 150 000 years. Climate of the Past, 2007, 3, 475-484.	1.3	143
6	lce thinning, upstream advection, and non-climatic biases for the upper 89% of the EDML ice core from a nested model of the Antarctic ice sheet. Climate of the Past, 2007, 3, 577-589.	1.3	52
7	Reconstruction of the annual balance of Vadret da Morteratsch, Switzerland, since 1865. Annals of Glaciology, 2009, 50, 126-134.	2.8	36
8	Calibration of a higher-order 3-D ice-flow model of the Morteratsch glacier complex, Engadin, Switzerland. Annals of Glaciology, 2013, 54, 343-351.	2.8	28
9	Past and present accumulation rate reconstruction along the Dome Fuji–Kohnen radio-echo sounding profile, Dronning Maud Land, East Antarctica. Annals of Glaciology, 2009, 50, 112-120.	2.8	23
10	Emptying Water Towers? Impacts of Future Climate and Glacier Change on River Discharge in the Northern Tien Shan, Central Asia. Water (Switzerland), 2020, 12, 627.	1.2	22
11	A comparison of Eulerian and Lagrangian methods for dating in numerical ice-sheet models. Annals of Glaciology, 2003, 37, 150-158.	2.8	21
12	Improved convergence and stability properties in a three-dimensional higher-order ice sheet model. Geoscientific Model Development, 2011, 4, 1133-1149.	1.3	20
13	Measuring and inferring the ice thickness distribution of four glaciers in the Tien Shan, Kyrgyzstan. Journal of Glaciology, 2021, 67, 269-286.	1.1	10
14	Modelling the evolution of Djankuat Glacier, North Caucasus, from 1752 until 2100 CE. Cryosphere, 2020, 14, 4039-4061.	1.5	8
15	Reconstruction of the Historical (1750–2020) Mass Balance of Bordu, Kara-Batkak and Sary-Tor Glaciers in the Inner Tien Shan, Kyrgyzstan. Frontiers in Earth Science, 2021, 9, .	0.8	8
16	Applying the energy- and water balance model for incorporation of the cryospheric component into a climate model. Part I. Description of the model and computed climatic fields of surface air temperature and precipitation rate. Russian Meteorology and Hydrology, 2015, 40, 731-740.	0.2	6
17	Reconstruction of Climate of the Eemian Interglacial Using an Earth System Model. Part 1. Set–up of Numerical Experiments and Model Fields of Surface Air Temperature and Precipitation Sums. Russian Meteorology and Hydrology, 2018, 43, 357-365.	0.2	4
18	Applying the energy- and water balance model for incorporation of the cryospheric component into a climate model. Part II. Modeled mass balance on the green land ice sheet surface. Russian Meteorology and Hydrology, 2016, 41, 379-387.	0.2	2

Oleg Rybak

#	Article	IF	CITATIONS
19	Downscaling of the global climate model data for the mass balance calculation of mountain glaciers. Led I Sneg, 2017, 57, 437-452.	0.1	2
20	Incorporation of ice sheet models into an Earth system model: Focus on methodology of coupling. Journal of Earth System Science, 2018, 127, 1.	0.6	1
21	Model-based calculations of surface mass balance of mountain glaciers for the purpose of water consumption planning: focus on Djankuat Glacier (Central Caucasus). IOP Conference Series: Earth and Environmental Science, 2018, 107, 012041.	0.2	1
22	Reconstruction of Climate of the Eemian Interglacial Using an Earth System Model. Part 2. The Response of the Greenland Ice Sheet to Climate Change. Russian Meteorology and Hydrology, 2018, 43, 366-371.	0.2	1
23	Equilibrium State of the Greenland Ice Sheet in the Earth System Model. Russian Meteorology and Hydrology, 2018, 43, 63-71.	0.2	1
24	Applying the Energy- and Water Balance Model for Incorporation of the Cryospheric Component into a Climate Model. Part III. Modeling Mass Balance on the Surface of the Antarctic Ice Sheet. Russian Meteorology and Hydrology, 2019, 44, 87-96.	0.2	1
25	Regional effects of the global climate change; a case study: the Sochi National Park area (Russia). Nature Conservation Research, 2017, 2, .	0.4	1
26	MATHEMATICAL MODELING OF DJANKUAT GLACIER EVOLUTION IN PRESENT-DAY CLIMATIC CONDITIONS. Sustainable Development of Mountain Territories, 2018, 10, 533-543.	0.1	0