
Zhirong Zhao-Karger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5857607/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A new class of non-corrosive, highly efficient electrolytes for rechargeable magnesium batteries. Journal of Materials Chemistry A, 2017, 5, 10815-10820.	10.3	319
2	Performance Improvement of Magnesium Sulfur Batteries with Modified Nonâ€Nucleophilic Electrolytes. Advanced Energy Materials, 2015, 5, 1401155.	19.5	308
3	Performance study of magnesium–sulfur battery using a graphene based sulfur composite cathode electrode and a non-nucleophilic Mg electrolyte. Nanoscale, 2016, 8, 3296-3306.	5.6	247
4	Toward Highly Reversible Magnesium–Sulfur Batteries with Efficient and Practical Mg[B(hfip) ₄] ₂ Electrolyte. ACS Energy Letters, 2018, 3, 2005-2013.	17.4	234
5	Towards stable and efficient electrolytes for room-temperature rechargeable calcium batteries. Energy and Environmental Science, 2019, 12, 3496-3501.	30.8	184
6	Altered thermodynamic and kinetic properties of MgH2 infiltrated in microporous scaffold. Chemical Communications, 2010, 46, 8353.	4.1	183
7	Bisamide based non-nucleophilic electrolytes for rechargeable magnesium batteries. RSC Advances, 2013, 3, 16330.	3.6	164
8	Metal Oxychlorides as Cathode Materials for Chloride Ion Batteries. Angewandte Chemie - International Edition, 2013, 52, 13621-13624.	13.8	145
9	Halideâ€Based Materials and Chemistry for Rechargeable Batteries. Angewandte Chemie - International Edition, 2020, 59, 5902-5949.	13.8	142
10	The metamorphosis of rechargeable magnesium batteries. Joule, 2021, 5, 581-617.	24.0	129
11	Fast kinetics of multivalent intercalation chemistry enabled by solvated magnesium-ions into self-established metallic layered materials. Nature Communications, 2018, 9, 5115.	12.8	114
12	A Porphyrin Complex as a Selfâ€Conditioned Electrode Material for Highâ€Performance Energy Storage. Angewandte Chemie - International Edition, 2017, 56, 10341-10346.	13.8	94
13	Multiâ€Electron Reactions Enabled by Anionâ€Based Redox Chemistry for Highâ€Energy Multivalent Rechargeable Batteries. Angewandte Chemie - International Edition, 2020, 59, 11483-11490.	13.8	91
14	The kinetic properties of Mg(BH ₄) ₂ infiltrated in activated carbon. Nanotechnology, 2009, 20, 204029.	2.6	90
15	Beyond Intercalation Chemistry for Rechargeable Mg Batteries: A Short Review and Perspective. Frontiers in Chemistry, 2018, 6, 656.	3.6	83
16	LiBH ₄ â^'Mg(BH ₄) ₂ : A Physical Mixture of Metal Borohydrides as Hydrogen Storage Material. Journal of Physical Chemistry C, 2011, 115, 6095-6101.	3.1	82
17	VOCI as a Cathode for Rechargeable Chloride Ion Batteries. Angewandte Chemie - International Edition, 2016, 55, 4285-4290.	13.8	81
18	Selenium and selenium-sulfur cathode materials for high-energy rechargeable magnesium batteries. Journal of Power Sources, 2016, 323, 213-219.	7.8	75

ZHIRONG ZHAO-KARGER

#	Article	IF	CITATIONS
19	Magnesium Anode for Chloride Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 10997-11000.	8.0	69
20	Vanadium Oxychloride/Magnesium Electrode Systems for Chloride Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 22430-22435.	8.0	64
21	New Organic Electrode Materials for Ultrafast Electrochemical Energy Storage. Advanced Materials, 2019, 31, e1806599.	21.0	64
22	Novel transmetalation reaction for electrolyte synthesis for rechargeable magnesium batteries. RSC Advances, 2014, 4, 26924-26927.	3.6	55
23	Copper Porphyrin as a Stable Cathode for Highâ€Performance Rechargeable Potassium Organic Batteries. ChemSusChem, 2020, 13, 2286-2294.	6.8	54
24	Insights into the electrochemical processes of rechargeable magnesium–sulfur batteries with a new cathode design. Journal of Materials Chemistry A, 2019, 7, 25490-25502.	10.3	53
25	MgSc ₂ Se ₄ —A Magnesium Solid Ionic Conductor for All‣olid‣tate Mg Batteries?. ChemSusChem, 2019, 12, 2286-2293.	6.8	49
26	Investigation of Magnesium–Sulfur Batteries using Electrochemical Impedance Spectroscopy. Electrochimica Acta, 2020, 338, 135787.	5.2	48
27	Investigation on the formation of Mg metal anode/electrolyte interfaces in Mg/S batteries with electrolyte additives. Journal of Materials Chemistry A, 2020, 8, 22998-23010.	10.3	46
28	Development of Magnesium Borate Electrolytes: Explaining the Success of Mg[B(hfip)4]2 Salt. Energy Storage Materials, 2022, 45, 1133-1143.	18.0	39
29	Establishing a Stable Anode–Electrolyte Interface in Mg Batteries by Electrolyte Additive. ACS Applied Materials & Interfaces, 2021, 13, 33123-33132.	8.0	34
30	Dual Role of Mo ₆ S ₈ in Polysulfide Conversion and Shuttle for Mg–S Batteries. Advanced Science, 2022, 9, e2104605.	11.2	33
31	Calcium-tin alloys as anodes for rechargeable non-aqueous calcium-ion batteries at room temperature. Nature Communications, 2022, 13, .	12.8	32
32	A Porphyrin Complex as a Selfâ€Conditioned Electrode Material for Highâ€Performance Energy Storage. Angewandte Chemie, 2017, 129, 10477-10482.	2.0	31
33	Polyoxometalate Modified Separator for Performance Enhancement of Magnesium–Sulfur Batteries. Advanced Functional Materials, 2021, 31, 2100868.	14.9	31
34	Operando UV/vis Spectroscopy Providing Insights into the Sulfur and Polysulfide Dissolution in Magnesium–Sulfur Batteries. ACS Energy Letters, 2022, 7, 1-9.	17.4	29
35	VOCl as a Cathode for Rechargeable Chloride Ion Batteries. Angewandte Chemie, 2016, 128, 4357-4362.	2.0	26
36	Insights into Self-Discharge of Lithium– and Magnesium–Sulfur Batteries. ACS Applied Energy Materials, 2020, 3, 8457-8474.	5.1	26

ZHIRONG ZHAO-KARGER

#	Article	IF	CITATIONS
37	Combining Quinoneâ€Based Cathode with an Efficient Borate Electrolyte for Highâ€Performance Magnesium Batteries. Batteries and Supercaps, 2021, 4, 1850-1857.	4.7	26
38	Surface Engineering of a Mg Electrode via a New Additive to Reduce Overpotential. ACS Applied Materials & Interfaces, 2021, 13, 37044-37051.	8.0	25
39	A Lithiumâ€Free Energyâ€&torage Device Based on an Alkyneâ€&ubstitutedâ€Porphyrin Complex. ChemSusChem, 2019, 12, 3737-3741.	6.8	24
40	Rechargeable Calcium–Sulfur Batteries Enabled by an Efficient Borateâ€Based Electrolyte. Small, 2020, 16, e2001806.	10.0	24
41	Interlayerâ€Expanded Vanadium Oxychloride as an Electrode Material for Magnesiumâ€Based Batteries. ChemElectroChem, 2017, 4, 738-745.	3.4	22
42	Designing Gel Polymer Electrolyte with Synergetic Properties for Rechargeable Magnesium Batteries. Energy Storage Materials, 2022, 48, 155-163.	18.0	21
43	Performance Study of MXene/Carbon Nanotube Composites for Current Collector―and Binderâ€Free Mg–S Batteries. ChemSusChem, 2021, 14, 1864-1873.	6.8	20
44	A Self onditioned Metalloporphyrin as a Highly Stable Cathode for Fast Rechargeable Magnesium Batteries. ChemSusChem, 2021, 14, 1840-1846.	6.8	17
45	A quasielastic and inelastic neutron scattering study of the alkaline and alkaline-earth borohydrides LiBH ₄ and Mg(BH ₄) ₂ and the mixture LiBH ₄ + Mg(BH ₄) ₂ . Physical Chemistry Chemical Physics, 2019, 21, 718-728.	2.8	15
46	Modeling of Ion Agglomeration in Magnesium Electrolytes and its Impacts on Battery Performance. ChemSusChem, 2020, 13, 3599-3604.	6.8	15
47	Multiâ€Electron Reactions Enabled by Anionâ€Based Redox Chemistry for Highâ€Energy Multivalent Rechargeable Batteries. Angewandte Chemie, 2020, 132, 11580-11587.	2.0	15
48	Modeling of Electronâ€Transfer Kinetics in Magnesium Electrolytes: Influence of the Solvent on the Battery Performance. ChemSusChem, 2021, 14, 4820-4835.	6.8	15
49	Halogenidâ€basierte Materialien und Chemie für wiederaufladbare Batterien. Angewandte Chemie, 2020, 132, 5954-6004.	2.0	14
50	Degradation Effects in Metal–Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 2365-2376.	5.1	12
51	Influence of Nanoconfinement on Reaction Pathways of Complex Metal Hydrides. Energy Procedia, 2012, 29, 731-737.	1.8	11
52	Mitigating self-discharge and improving the performance of Mg–S battery in Mg[B(hfip) ₄] ₂ electrolyte with a protective interlayer. Journal of Materials Chemistry A, 2021, 9, 25150-25159.	10.3	11
53	Investigation of the Anodeâ€Electrolyte Interface in a Magnesium Fullâ€Cell with Fluorinated Alkoxyborateâ€Based Electrolyte. Batteries and Supercaps, 2022, 5, .	4.7	8
54	Environmental assessment of a new generation battery: The magnesium-sulfur system. Journal of Energy Storage, 2021, 35, 102053.	8.1	7

#	Article	IF	CITATIONS
55	Lithium-Magnesium Hybrid Battery with Vanadium Oxychloride as Electrode Material. ChemistrySelect, 2017, 2, 7558-7564.	1.5	6
56	Calcium–Sulfur Batteries: Rechargeable Calcium–Sulfur Batteries Enabled by an Efficient Borateâ€Based Electrolyte (Small 39/2020). Small, 2020, 16, 2070216.	10.0	5
57	Understanding Structure Changes during Cycling of MoS2-based Mg Batteries. Microscopy and Microanalysis, 2019, 25, 2042-2043.	0.4	0