## Haibin Mao

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5857571/publications.pdf

Version: 2024-02-01

|          |                | 858243        | 1336881        |  |
|----------|----------------|---------------|----------------|--|
| 12       | 2,979          | 12            | 12             |  |
| papers   | citations      | h-index       | g-index        |  |
|          |                |               |                |  |
|          |                |               |                |  |
| 13       | 13             | 13            | 4787           |  |
| all docs | docs citations | times ranked  | citing authors |  |
| an docs  | does citations | tilles rankeu | citing authors |  |
|          |                |               |                |  |

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Defining molecular glues with a dual-nanobody cannabidiol sensor. Nature Communications, 2022, 13, 815.                                                                                                                        | 5.8  | 39        |
| 2  | Structural dynamics of the human COP9 signalosome revealed by cross-linking mass spectrometry and integrative modeling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4088-4098. | 3.3  | 58        |
| 3  | Structural plasticity of D3–D14 ubiquitin ligase in strigolactone signalling. Nature, 2018, 563, 652-656.                                                                                                                      | 13.7 | 138       |
| 4  | Allosteric Activation of Ubiquitin-Specific Proteases by $\hat{l}^2$ -Propeller Proteins UAF1 and WDR20. Molecular Cell, 2016, 63, 249-260.                                                                                    | 4.5  | 54        |
| 5  | Inositol Polyphosphate Binding Specificity of the Jasmonate Receptor Complex. Plant Physiology, 2016, 171, 2364-2370.                                                                                                          | 2.3  | 40        |
| 6  | Inositol hexakisphosphate (IP6) generated by IP5K mediates cullin-COP9 signalosome interactions and CRL function. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3503-3508.       | 3.3  | 33        |
| 7  | VIH2 Regulates the Synthesis of Inositol Pyrophosphate InsP <sub>8</sub> and Jasmonate-Dependent Defenses in Arabidopsis. Plant Cell, 2015, 27, 1082-1097.                                                                     | 3.1  | 153       |
| 8  | Gln40 deamidation blocks structural reconfiguration and activation of SCF ubiquitin ligase complex by Nedd8. Nature Communications, 2015, 6, 10053.                                                                            | 5.8  | 36        |
| 9  | Rate Motifs Tune Auxin/Indole-3-Acetic Acid Degradation Dynamics. Plant Physiology, 2015, 169, 803-813.                                                                                                                        | 2.3  | 65        |
| 10 | D14–SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature, 2013, 504, 406-410.                                                                                                                         | 13.7 | 669       |
| 11 | A combinatorial TIR1/AFB–Aux/IAA co-receptor system for differential sensing of auxin. Nature<br>Chemical Biology, 2012, 8, 477-485.                                                                                           | 3.9  | 490       |
| 12 | Jasmonate perception by inositol-phosphate-potentiated COI1–JAZ co-receptor. Nature, 2010, 468, 400-405.                                                                                                                       | 13.7 | 1,192     |