Stephen D Griffin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5857377/publications.pdf

Version: 2024-02-01

172443 161844 3,120 62 29 54 citations g-index h-index papers 68 68 68 3216 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mosquito saliva enhances virus infection through sialokinin-dependent vascular leakage. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	16
2	Mass infection is not an option: we must do more to protect our young. Lancet, The, 2021, 398, 297-298.	13.7	24
3	Rapid evidence review to inform safe return to campus in the context of coronavirus disease 2019 (COVID-19). Wellcome Open Research, 2021, 6, 282.	1.8	6
4	Vaccinating adolescents against SARS-CoV-2 in England: a risk–benefit analysis. Journal of the Royal Society of Medicine, 2021, 114, 513-524.	2.0	32
5	Site-directed M2 proton channel inhibitors enable synergistic combination therapy for rimantadine-resistant pandemic influenza. PLoS Pathogens, 2020, 16, e1008716.	4.7	9
6	MicroRNA-18a targeting of the STK4/MST1 tumour suppressor is necessary for transformation in HPV positive cervical cancer. PLoS Pathogens, 2020, 16, e1008624.	4.7	46
7	Rationally derived inhibitors of hepatitis C virus (HCV) p7 channel activity reveal prospect for bimodal antiviral therapy. ELife, 2020, 9, .	6.0	4
8	Title is missing!. , 2020, 16, e1008716.		O
9	Title is missing!. , 2020, 16, e1008716.		O
10	Title is missing!. , 2020, 16, e1008716.		0
11	Title is missing!. , 2020, 16, e1008716.		O
12	Title is missing!. , 2020, 16, e1008716.		0
13	Title is missing!. , 2020, 16, e1008716.		O
14	Modulation of calcium signaling pathway by hepatitis C virus core protein stimulates NLRP3 inflammasome activation. PLoS Pathogens, 2019, 15, e1007593.	4.7	75
15	Intravenous delivery of oncolytic reovirus to brain tumor patients immunologically primes for subsequent checkpoint blockade. Science Translational Medicine, 2018, 10, .	12.4	288
16	Oncolytic reovirus as a combined antiviral and anti-tumour agent for the treatment of liver cancer. Gut, 2018, 67, 562-573.	12.1	49
17	Alkyl-imino sugars inhibit the pro-oncogenic ion channel function of human papillomavirus (HPV) E5. Antiviral Research, 2018, 158, 113-121.	4.1	26
18	Release of Infectious Hepatitis C Virus from Huh7 Cells Occurs via a <i>trans</i> -Golgi Network-to-Endosome Pathway Independent of Very-Low-Density Lipoprotein Secretion. Journal of Virology, 2016, 90, 7159-7170.	3.4	41

#	Article	IF	Citations
19	Small molecule ligand docking to genotype specific bundle structures of hepatitis C virus (HCV) p7 protein. Computational Biology and Chemistry, 2016, 64, 56-63.	2.3	3
20	Ion Channel Function and Cross-Species Determinants in Viral Assembly of Nonprimate Hepacivirus p7. Journal of Virology, 2016, 90, 5075-5089.	3.4	4
21	Viroporins: structure, function and potential as antiviral targets. Journal of General Virology, 2015, 96, 2000-2027.	2.9	102
22	Genotype-specific differences in structural features of hepatitis C virus (HCV) p7 membrane protein. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1383-1392.	2.6	23
23	A novel method for the measurement of hepatitis C virus infectious titres using the IncuCyte ZOOM and its application to antiviral screening. Journal of Virological Methods, 2015, 218, 59-65.	2.1	27
24	Progress in clinical oncolytic virus-based therapy for hepatocellular carcinoma. Journal of General Virology, 2015, 96, 1533-1550.	2.9	30
25	Structureâ€guided design affirms inhibitors of hepatitis C virus p7 as a viable class of antivirals targeting virion release. Hepatology, 2014, 59, 408-422.	7.3	56
26	"Too little, too late?―Will inhibitors of the hepatitis C virus p7 ion channel ever be used in the clinic?. Future Medicinal Chemistry, 2014, 6, 1893-1907.	2.3	8
27	P12 * A PHASE I TRIAL OF INTRAVENOUS ONCOLYTIC REOLYSIN(R) IN PATIENTS WITH BRAIN TUMOURS. Neuro-Oncology, 2014, 16, vi3-vi3.	1.2	2
28	The stability of secreted, acid-labile H77/JFH-1 hepatitis C virus (HCV) particles is altered by patient isolate genotype 1a p7 sequences. Virology, 2014, 448, 117-124.	2.4	14
29	NS2 is dispensable for efficient assembly of hepatitis C virus-like particles in a bipartite trans-encapsidation system. Journal of General Virology, 2014, 95, 2427-2441.	2.9	1
30	Mutations in hepatitis C virus p7 reduce both the egress and infectivity of assembled particles via impaired proton channel function. Journal of General Virology, 2013, 94, 2236-2248.	2.9	25
31	Virusâ€coded Ion Channels as Antiviral Targets. RSC Drug Discovery Series, 2013, , 295-362.	0.3	0
32	Hepatitis C Virus-Induced Autophagy Is Independent of the Unfolded Protein Response. Journal of Virology, 2012, 86, 10724-10732.	3.4	51
33	High-Risk Human Papillomavirus E5 Oncoprotein Displays Channel-Forming Activity Sensitive to Small-Molecule Inhibitors. Journal of Virology, 2012, 86, 5341-5351.	3.4	95
34	Genetic and functional heterogeneity of the hepatitis C virus p7 ion channel during natural chronic infection. Virology, 2012, 423, 30-37.	2.4	12
35	Resistance mutations define specific antiviral effects for inhibitors of the hepatitis C virus p7 ion channel. Hepatology, 2011, 54, 79-90.	7.3	62
36	Nucleotide requirements at positions $+1$ to $+4$ for the initiation of hepatitis C virus positive-strand RNA synthesis. Journal of General Virology, 2011, 92, 1082-1086.	2.9	4

#	Article	IF	Citations
37	Internalization of Oncolytic Reovirus by Human Dendritic Cell Carriers Protects the Virus from Neutralization. Clinical Cancer Research, 2011, 17, 2767-2776.	7.0	73
38	The subcellular localization of the hepatitis C virus non-structural protein NS2 is regulated by an ion channel-independent function of the p7 protein. Journal of General Virology, 2011, 92, 819-830.	2.9	38
39	Direct visualization of the small hydrophobic protein of human respiratory syncytial virus reveals the structural basis for membrane permeability. FEBS Letters, 2010, 584, 2786-2790.	2.8	56
40	Enhanced hepatitis C virus genome replication and lipid accumulation mediated by inhibition of AMP-activated protein kinase. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11549-11554.	7.1	126
41	Vps4 and the ESCRT-III complex are required for the release of infectious hepatitis C virus particles. Journal of General Virology, 2010, 91, 362-372.	2.9	95
42	Intracellular Proton Conductance of the Hepatitis C Virus p7 Protein and Its Contribution to Infectious Virus Production. PLoS Pathogens, 2010, 6, e1001087.	4.7	162
43	Identification of a novel phosphorylation site in hepatitis C virus NS5A. Journal of General Virology, 2010, 91, 2428-2432.	2.9	11
44	Inhibition of HCV p7 as a therapeutic target. Current Opinion in Investigational Drugs, 2010, 11, 175-81.	2.3	13
45	Expression of hepatitis C virus (HCV) structural proteins in trans facilitates encapsidation and transmission of HCV subgenomic RNA. Journal of General Virology, 2009, 90, 833-842.	2.9	23
46	Plugging the holes in hepatitis C virus antiviral therapy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12567-12568.	7.1	20
47	Suppression of a pro-apoptotic K ⁺ channel as a mechanism for hepatitis C virus persistence. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15903-15908.	7.1	58
48	A Conserved Proline between Domains II and III of Hepatitis C Virus NS5A Influences both RNA Replication and Virus Assembly. Journal of Virology, 2009, 83, 10788-10796.	3.4	37
49	Determinants of Hepatitis C Virus p7 Ion Channel Function and Drug Sensitivity Identified In Vitro. Journal of Virology, 2009, 83, 7970-7981.	3.4	62
50	Domain III of NS5A contributes to both RNA replication and assembly of hepatitis C virus particles. Journal of General Virology, 2009, 90, 1329-1334.	2.9	93
51	Genotype-dependent sensitivity of hepatitis C virus to inhibitors of the p7 ion channel. Hepatology, 2008, 48, 1779-1790.	7.3	109
52	The Hepatitis C Virus Nonâ€Structural Protein NS5A Alters the Trafficking Profile of the Epidermal Growth Factor Receptor. Traffic, 2008, 9, 1497-1509.	2.7	37
53	Chimeric GB virus B genomes containing hepatitis C virus p7 are infectious in vivo. Journal of Hepatology, 2008, 49, 908-915.	3.7	17
54	Inhibition of hepatitis C virus p7 membrane channels in a liposome-based assay system. Antiviral Research, 2007, 76, 48-58.	4.1	75

#	Article	IF	CITATION
55	Evidence for the Formation of a Heptameric Ion Channel Complex by the Hepatitis C Virus P7 Protein in Vitro. Journal of Biological Chemistry, 2006, 281, 37057-37068.	3.4	120
56	A link between translation of the hepatitis C virus polyprotein and polymerase function; possible consequences for hyperphosphorylation of NS5A. Journal of General Virology, 2006, 87, 93-102.	2.9	18
57	Tagging of NS5A expressed from a functional hepatitis C virus replicon. Journal of General Virology, 2006, 87, 635-640.	2.9	21
58	Signal Peptide Cleavage and Internal Targeting Signals Direct the Hepatitis C Virus p7 Protein to Distinct Intracellular Membranes. Journal of Virology, 2005, 79, 15525-15536.	3.4	66
59	A conserved basic loop in hepatitis C virus p7 protein is required for amantadine-sensitive ion channel activity in mammalian cells but is dispensable for localization to mitochondria. Journal of General Virology, 2004, 85, 451-461.	2.9	149
60	The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug, Amantadine. FEBS Letters, 2003, 535, 34-38.	2.8	403
61	The Major Human Immunodeficiency Virus Type 2 (HIV-2) Packaging Signal Is Present on All HIV-2 RNA Species: Cotranslational RNA Encapsidation and Limitation of Gag Protein Confer Specificity. Journal of Virology, 2001, 75, 12058-12069.	3.4	82
62	Rapid evidence review to inform safe return to campus in the context of coronavirus disease 2019 (COVID-19). Wellcome Open Research, 0, 6, 282.	1.8	2