Manuel DomÃ-nguez-Rodrigo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5857293/publications.pdf

Version: 2024-02-01

		66234	102304
140	5,524	42	66
papers	citations	h-index	g-index
142	142	142	2196
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Determining the diagenetic paths of archaeofaunal assemblages and their palaeoecology through artificial intelligence: an application to Oldowan sites from Olduvai Gorge (Tanzania). Journal of Quaternary Science, 2022, 37, 543-557.	1.1	3
2	The evolution of stone tool technology at Olduvai Gorge (Tanzania): Contributions from the Olduvai Paleoanthropology and Paleoecology Project. Anthropologie, 2022, 126, 103000.	0.1	5
3	A case of hominin scavenging 1.84 million years ago from Olduvai Gorge (Tanzania). Annals of the New York Academy of Sciences, 2022, 1510, 121-131.	1.8	5
4	Sabertooth carcass consumption behavior and the dynamics of Pleistocene large carnivoran guilds. Scientific Reports, 2022, 12, 6045.	1.6	7
5	Editorial: Human-Animal Interactions in Prehistoric China. Frontiers in Earth Science, 2022, 10, .	0.8	0
6	High-accuracy in the classification of butchery cut marks and crocodile tooth marks using machine learning methods and computer vision algorithms. Geobios, 2022, 72-73, 12-21.	0.7	5
7	Deep learning classification of tooth scores made by different carnivores: achieving high accuracy when comparing African carnivore taxa and testing the hominin shift in the balance of power. Archaeological and Anthropological Sciences, 2021, 13, 1.	0.7	15
8	A 3D taphonomic model of long bone modification by lions in medium-sized ungulate carcasses. Scientific Reports, 2021, 11, 4944.	1.6	9
9	Dragged, lagged, or undisturbed: reassessing the autochthony of the hominin-bearing assemblages at Gran Dolina (Atapuerca, Spain). Archaeological and Anthropological Sciences, 2021, 13, 1.	0.7	9
10	Elevated rates of horizontal gene transfer in the industrialized human microbiome. Cell, 2021, 184, 2053-2067.e18.	13.5	167
11	Use of Generative Adversarial Networks (GAN) for Taphonomic Image Augmentation and Model Protocol for the Deep Learning Analysis of Bone Surface Modifications. Applied Sciences (Switzerland), 2021, 11, 5237.	1.3	5
12	Deep classification of cut-marks on bones from Arroyo del VizcaÃno (Uruguay). Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210711.	1.2	7
13	Tracing the spatial imprint of Oldowan technological behaviors: A view from DS (Bed I, Olduvai Gorge,) Tj ETQq1	1	4 _I gBT /Over
14	The first comprehensive micro use-wear analysis of an early Acheulean assemblage (Thiongo Korongo,) Tj ETQq0 (0 0 rgBT /0 1.4	Dvgrlock 10 T
15	Early Pleistocene faunivorous hominins were not kleptoparasitic, and this impacted the evolution of human anatomy and socio-ecology. Scientific Reports, 2021, 11, 16135.	1.6	18
16	More than meets the eye: use of computer vision algorithms to identify stone tool material through the analysis of cut mark micro-morphology. Archaeological and Anthropological Sciences, 2021, 13, 1.	0.7	6
17	Do human butchery patterns exist? A study of the interaction of randomness and channelling in the distribution of cut marks on long bones. Journal of the Royal Society Interface, 2021, 18, 20200958.	1.5	4
18	En busca del primer Homo: gestión de las investigación arqueológica en la garganta de Olduvai (Tanzania), Complutum, 2021, 22, 495,504	0.1	0

(Tanzania). Complutum, 2021, 32, 495-504.

#	Article	IF	CITATIONS
19	Dynamic modification of cut marks by trampling: temporal assessment through the use of mixed-effect regressions and deep learning methods. Archaeological and Anthropological Sciences, 2020, 12, 1.	0.7	15
20	Who peeled the bones? An actualistic and taphonomic study of axial elements from the Toll Cave Level 4, Barcelona, Spain. Quaternary Science Reviews, 2020, 250, 106661.	1.4	8
21	Corrigendum to †Deep learning improves taphonomic resolution: high accuracy in differentiating tooth marks made by lions and jaguars'. Journal of the Royal Society Interface, 2020, 17, 20200782.	1.5	10
22	Microbial biomarkers reveal a hydrothermally active landscape at Olduvai Gorge at the dawn of the Acheulean, 1.7 Ma. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24720-24728.	3.3	12
23	Deep learning improves taphonomic resolution: high accuracy in differentiating tooth marks made by lions and jaguars. Journal of the Royal Society Interface, 2020, 17, 20200446.	1.5	16
24	Artificial intelligence provides greater accuracy in the classification of modern and ancient bone surface modifications. Scientific Reports, 2020, 10, 18862.	1.6	31
25	Experimental approaches to the development of use-wear traces on volcanic rocks: basalts. Archaeological and Anthropological Sciences, 2020, 12, 1.	0.7	7
26	Distinguishing Discoid and Centripetal Levallois methods through machine learning. PLoS ONE, 2020, 15, e0244288.	1.1	13
27	What comes after the Developed Oldowan B debate? Techno-economic data from SHK main site (Middle) Tj ET	Qq1_1_0.78	43]4 rgBT /0
28	A geoarchaeological reassessment of the co-occurrence of the oldest Acheulean and Oldowan in a fluvial ecotone from lower middle Bed II (1.7ma) at Olduvai Gorge (Tanzania). Quaternary International, 2019, 526, 39-48.	0.7	14
29	Mineral assemblages and low energy sedimentary processes in the FLK-Zinj, DS, PTK and AMK complex palaeolandscape (Olduvai Gorge, Tanzania). Quaternary International, 2019, 526, 15-25.	0.7	8
30	A use-wear interpretation of the most common raw materials from the Olduvai Gorge: Naibor Soit quartzite. Quaternary International, 2019, 526, 169-192.	0.7	15
31	Recent discoveries on the evolution of early human behavior at Olduvai Gorge (Tanzania). Quaternary International, 2019, 526, 1-3.	0.7	1
32	The river that never was: Fluvial taphonomy at Olduvai Bed I and II sites and its bearing on early human behavior. Quaternary International, 2019, 526, 26-38.	0.7	9
33	Assessing functionality during the early Acheulean in level TKSF at Thiongo Korongo site (Olduvai) Tj ETQq1 1 (0.784314 rg	gBT_/Overlock
34	Application of geometric morphometrics to the analysis of cut mark morphology on different bones of differently sized animals. Does size really matter?. Quaternary International, 2019, 517, 33-44.	0.7	24
35	Who ate OH80 (Olduvai Gorge, Tanzania)? A geometric-morphometric analysis of surface bone modifications of a Paranthropus boisei skeleton. Quaternary International, 2019, 517, 118-130.	0.7	16

 $_{36}$ Cut marks and raw material exploitation in the lower pleistocene site of Bell's Korongo (BK, Olduvai) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $_{17}^{50}$

#	Article	IF	CITATIONS
37	Level U3.1, a new archaeological level discovered at BK (upper bed II, Olduvai Gorge) with evidence of megafaunal exploitation. Journal of African Earth Sciences, 2019, 158, 103545.	0.9	6
38	Taphonomic analysis of the level 3b fauna at BK, Olduvai Gorge. Quaternary International, 2019, 526, 116-128.	0.7	8
39	Constraining time and ecology on the Zinj paleolandscape: Microwear and mesowear analyses of the archaeofaunal remains of FLK Zinj and DS (Bed I), compared to FLK North (Bed I) and BK (Bed II) at Olduvai Gorge (Tanzania). Quaternary International, 2019, 526, 4-14.	0.7	10
40	Classifying agency in bone breakage: an experimental analysis of fracture planes to differentiate between hominin and carnivore dynamic and static loading using machine learning (ML) algorithms. Archaeological and Anthropological Sciences, 2019, 11, 4663-4680.	0.7	30
41	Spilled ink blots the mind: A reply to Merrit et al. (2018) on subjectivity and bone surface modifications. Journal of Archaeological Science, 2019, 102, 80-86.	1.2	12
42	Automated identification and deep classification of cut marks on bones and its paleoanthropological implications. Journal of Computational Science, 2019, 32, 36-43.	1.5	35
43	Pliocene Archaeology at Lomekwi 3? New Evidence Fuels More Skepticism. Journal of African Archaeology, 2019, 17, 173-176.	0.3	18
44	Deep learning and taphonomy: high accuracy in the classification of cut marks made on fleshed and defleshed bones using convolutional neural networks. Scientific Reports, 2019, 9, 18933.	1.6	38
45	The meta-group social network of early humans: A temporal–spatial assessment of group size at FLK Zinj (Olduvai Gorge, Tanzania). Journal of Human Evolution, 2019, 127, 54-66.	1.3	18
46	Striped hyenas as bone modifiers in dual human-to-carnivore experimental models. Archaeological and Anthropological Sciences, 2019, 11, 3187-3199.	0.7	10
47	Geometric-morphometric analysis of tooth pits and the identification of felid and hyenid agency in bone modification. Quaternary International, 2019, 517, 79-87.	0.7	14
48	Successful classification of experimental bone surface modifications (BSM) through machine learning algorithms: a solution to the controversial use of BSM in paleoanthropology?. Archaeological and Anthropological Sciences, 2019, 11, 2711-2725.	0.7	31
49	Distinguishing butchery cut marks from crocodile bite marks through machine learning methods. Scientific Reports, 2018, 8, 5786.	1.6	42
50	Hominin skeletal part abundances and claims of deliberate disposal of corpses in the Middle Pleistocene. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4601-4606.	3.3	45
51	Micro-photogrammetric and morphometric differentiation of cut marks on bones using metal knives, quartzite, and flint flakes. Archaeological and Anthropological Sciences, 2018, 10, 805-816.	0.7	43
52	Fluvial spatial taphonomy: a new method for the study of post-depositional processes. Archaeological and Anthropological Sciences, 2018, 10, 1769-1789.	0.7	18
53	An experimental study of the patterned nature of anthropogenic bone breakage and its impact on bone surface modification frequencies. Journal of Archaeological Science, 2018, 96, 1-13.	1.2	15
54	A new approach to raw material use in the exploitation of animal carcasses at <scp>BK</scp> (Upper) Tj ETQq0 0	0 rgBT /0 1.2	verlock 10 T 60

analysis of fossil cut marks. Boreas, 2017, 46, 860-873.

#	Article	IF	CITATIONS
55	On applications of micro-photogrammetry and geometric morphometrics to studies of tooth mark morphology: The modern Olduvai Carnivore Site (Tanzania). Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 488, 103-112.	1.0	48
56	Diversity and significance of core preparation in the Developed Oldowan technology: reconstructing the flaking processes at SHK and BK (Middleâ€Upper Bed II, Olduvai Gorge, Tanzania). Boreas, 2017, 46, 874-893.	1.2	23
57	The paleoecology and taphonomy of AMK (Bed I, Olduvai Gorge) and its contributions to the understanding of the "Zinj―paleolandscape. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 488, 35-49.	1.0	21
58	Geoarchaeology in a meandering river: A study of the BK site (1.35 Ma), Upper Bed II, Olduvai Gorge (Tanzania). Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 488, 76-83.	1.0	7
59	Assessment of statistical agreement of three techniques for the study of cut marks: 3D digital microscope, laser scanning confocal microscopy and microâ€photogrammetry. Journal of Microscopy, 2017, 267, 356-370.	0.8	40
60	A reconstruction of the paleolandscape during the earliest Acheulian of FLK West: The co-existence of Oldowan and Acheulian industries during lowermost Bed II (Olduvai Gorge, Tanzania). Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 488, 50-58.	1.0	27
61	Spatial simulation and modelling of the early Pleistocene site of <scp>DS</scp> (Bed I, Olduvai Gorge,) Tj ETQq1 1 areas. Boreas, 2017, 46, 805-815.	l 0.784314 1.2	4 rgBT /Ove 20
62	A spatial analysis of stone tools and fossil bones at FLK Zinj 22 and PTK I (Bed I, Olduvai Gorge,) Tj ETQq0 0 0 rgBT Palaeoclimatology, Palaeoecology, 2017, 488, 21-34.	/Overlock 1.0	2 10 Tf 50 46 37
63	The spatial patterning of the social organization of modern foraging Homo sapiens: A methodological approach for understanding social organization in prehistoric foragers. Palaeogeography, Palaeoeclogy, 2017, 488, 113-125.	1.0	14
64	The use of Micro-Photogrammetry and Geometric Morphometrics for identifying carnivore agency in bone assemblages. Journal of Archaeological Science: Reports, 2017, 14, 106-115.	0.2	32
65	Pandora: A new morphometric and statistical software for analysing and distinguishing cut marks on bones. Journal of Archaeological Science: Reports, 2017, 13, 60-66.	0.2	11
66	<scp>FLK</scp> West (Lower Bed <scp>II</scp> , Olduvai Gorge, Tanzania): a new early Acheulean site with evidence for human exploitation of fauna. Boreas, 2017, 46, 816-830.	1.2	53
67	Biotic and abiotic processes affecting the formation of BK Level 4c (Bed II, Olduvai Gorge) and their bearing on hominin behavior at the site. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 488, 59-75.	1.0	26
68	Starch contamination landscapes in field archaeology: Olduvai Gorge, Tanzania. Boreas, 2017, 46, 918-934.	1.2	45
69	Use and abuse of cut mark analyses: The Rorschach effect. Journal of Archaeological Science, 2017, 86, 14-23.	1.2	58
70	Site function and lithic technology in the Acheulean technocomplex: a case study from Thiongo Korongo (<scp>TK</scp>), Bed <scp>II</scp> , Olduvai Gorge, Tanzania. Boreas, 2017, 46, 894-917.	1.2	25
71	<scp>SHK</scp> Extension: a new archaeological window in the <scp>SHK</scp> fluvial landscape of Middle Bed <scp>II</scp> (Olduvai Gorge, Tanzania). Boreas, 2017, 46, 831-859.	1.2	15
72	Discerning carnivore agency through the three-dimensional study of tooth pits: Revisiting crocodile feeding behaviour at FLK- Zinj and FLK NN3 (Olduvai Gorge, Tanzania). Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 488, 93-102.	1.0	64

#	Article	IF	CITATIONS
73	New methodological and technological approaches to the Oldowan and Acheulian archaeology of Olduvai Gorge (Tanzania) – introduction. Boreas, 2017, 46, 799-804.	1.2	2
74	The meat of the matter: an evolutionary perspective on human carnivory. Azania, 2017, 52, 4-32.	0.4	58
75	The origin of the Acheulean. Techno-functional study of the FLK W lithic record (Olduvai, Tanzania). PLoS ONE, 2017, 12, e0179212.	1.1	19
76	Lions as Bone Accumulators? Paleontological and Ecological Implications of a Modern Bone Assemblage from Olduvai Gorge. PLoS ONE, 2016, 11, e0153797.	1.1	42
77	Techno-economic human behavior in a context of recurrent megafaunal exploitation at 1.3 Ma. Evidence from BK4b (Upper Bed II, Olduvai Gorge, Tanzania). Journal of Archaeological Science: Reports, 2016, 9, 386-404.	0.2	18
78	The larger mammal palimpsest from TK (Thiongo Korongo), Bed II, Olduvai Gorge, Tanzania. Quaternary International, 2016, 417, 3-15.	0.7	26
79	An experimental lion-to-hammerstone model and its relevance to understand hominin-carnivore interactions in the archeological record. Journal of Archaeological Science, 2016, 66, 69-77.	1.2	17
80	When felids and hominins ruled at Olduvai Gorge: A machine learning analysis of the skeletal profiles of the non-anthropogenic Bed I sites. Quaternary Science Reviews, 2016, 139, 43-52.	1.4	34
81	Dietary options and behavior suggested by plant biomarker evidence in an early human habitat. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2874-2879.	3.3	76
82	Did Homo erectus kill a Pelorovis herd at BK (Olduvai Gorge)? A taphonomic study of BK5. Archaeological and Anthropological Sciences, 2016, 8, 601-624.	0.7	21
83	Differential Predation by Age and Sex Classes in Blue Wildebeest in Serengeti: Study of a Modern Carnivore Den in Olduvai Gorge (Tanzania). PLoS ONE, 2015, 10, e0125944.	1.1	11
84	A new methodological approach to the taphonomic study of paleontological and archaeological faunal assemblages: a preliminary case study from Olduvai Gorge (Tanzania). Journal of Archaeological Science, 2015, 59, 35-53.	1.2	54
85	Patterns of bovid long limb bone modification created by wild and captive leopards and their relevance to the elaboration of referential frameworks for paleoanthropology. Journal of Archaeological Science: Reports, 2015, 2, 302-309.	0.2	17
86	Another window to the subsistence of Middle Pleistocene hominins in Europe: A taphonomic study of Cuesta de la Bajada (Teruel, Spain). Quaternary Science Reviews, 2015, 126, 67-95.	1.4	26
87	Micro-photogrammetric characterization of cut marks on bones. Journal of Archaeological Science, 2015, 62, 128-142.	1.2	98
88	Earliest modern human-like hand bone from a new >1.84-million-year-old site at Olduvai in Tanzania. Nature Communications, 2015, 6, 7987.	5.8	46
89	The "Bear―Essentials: Actualistic Research on Ursus arctos arctos in the Spanish Pyrenees and Its Implications for Paleontology and Archaeology. PLoS ONE, 2014, 9, e102457.	1.1	66
90	New archaeological and geological research at SHK main site (Bed II, Olduvai Gorge, Tanzania). Quaternary International, 2014, 322-323, 107-128.	0.7	37

#	Article	IF	CITATIONS
91	A critical re-evaluation of bone surface modification models for inferring fossil hominin and carnivore interactions through a multivariate approach: Application to the FLK Zinj archaeofaunal assemblage (Olduvai Gorge, Tanzania). Quaternary International, 2014, 322-323, 32-43.	0.7	72
92	Study of the SHK Main Site faunal assemblage, Olduvai Gorge, Tanzania: Implications for Bed II taphonomy, paleoecology, and hominin utilization of megafauna. Quaternary International, 2014, 322-323, 153-166.	0.7	42
93	Orientation patterns of wildebeest bones on the lake Masek floodplain (Serengeti, Tanzania) and their relevance to interpret anisotropy in the Olduvai lacustrine floodplain. Quaternary International, 2014, 322-323, 277-284.	0.7	20
94	An ecological neo-taphonomic study of carcass consumption by lions in Tarangire National Park (Tanzania) and its relevance for human evolutionary biology. Quaternary International, 2014, 322-323, 167-180.	0.7	71
95	Technological strategies and the economy of raw materials in the TK (Thiongo Korongo) lower occupation, Bed II, Olduvai Gorge, Tanzania. Quaternary International, 2014, 322-323, 181-208.	0.7	51
96	Reassessment of the Early Acheulean at EN1-Noolchalai (Ancient RHS-Mugulud) in Peninj (Lake Natron,) Tj ETQq(0.0 rgBT	Overlock 10
97	Taphonomy of ungulate ribs and the consumption of meat and bone by 1.2-million-year-old hominins at Olduvai Gorge, Tanzania. Journal of Archaeological Science, 2013, 40, 1295-1309.	1.2	72
98	A cautionary note on the use of captive carnivores to model wild predator behavior: a comparison of bone modification patterns on long bones by captive and wild lions. Journal of Archaeological Science, 2013, 40, 1903-1910.	1.2	103
99	A method for reconstructing human femoral length from fragmented shaft specimens. HOMO- Journal of Comparative Human Biology, 2013, 64, 29-41.	0.3	12
100	Learning by Heart: Cultural Patterns in the Faunal Processing Sequence during the Middle Pleistocene. PLoS ONE, 2013, 8, e55863.	1.1	61
101	Testing the Accuracy of Different A-Axis Types for Measuring the Orientation of Bones in the Archaeological and Paleontological Record. PLoS ONE, 2013, 8, e68955.	1.1	23
102	First Partial Skeleton of a 1.34-Million-Year-Old Paranthropus boisei from Bed II, Olduvai Gorge, Tanzania. PLoS ONE, 2013, 8, e80347.	1.1	140
103	Experimental study of cut marks made with rocks unmodified by human flaking and its bearing on claims of â^1⁄43.4-million-year-old butchery evidence from Dikika, Ethiopia. Journal of Archaeological Science, 2012, 39, 205-214.	1.2	80
104	A study of dimensional differences of tooth marks (pits and scores) on bones modified by small and large carnivores. Archaeological and Anthropological Sciences, 2012, 4, 209-219.	0.7	146
105	Earliest Porotic Hyperostosis on a 1.5-Million-Year-Old Hominin, Olduvai Gorge, Tanzania. PLoS ONE, 2012, 7, e46414.	1.1	54
106	The Early Acheulean inAfrica: Past paradigms, current ideas, and future directions. , 2012, , 310-358.		15
107	The use of bone surface modificationsto model hominid lifeways during the Oldowan. , 2012, , 80-114.		11
108	On earlyhominin meat eating and carcass acquisition strategies: Still relevant after all these years?. ,		6

2012, , 115-151. 108

#	Article	IF	CITATIONS
109	Whatdoes Oldowan technology represent in terms of hominin behavior?. , 2012, , 222-244.		7
110	Taphonomic analysis of the early Pleistocene (2.4Ma) faunal assemblage from A.L. 894 (Hadar, Ethiopia). Journal of Human Evolution, 2012, 62, 315-327.	1.3	32
111	Critical review of the MNI (minimum number of individuals) as a zooarchaeological unit of quantification. Archaeological and Anthropological Sciences, 2012, 4, 47-59.	0.7	55
112	A taphonomic study of a carcass consumed by griffon vultures (Gyps fulvus) and its relevance for the interpretation of bone surface modifications. Archaeological and Anthropological Sciences, 2011, 3, 385-392.	0.7	25
113	An Experimental Study of Bipolar and Freehand Knapping of Naibor Soit Quartz from Olduvai Gorge (Tanzania). American Antiquity, 2011, 76, 690-708.	0.6	83
114	How Accurate are Paleoecological Reconstructions of Early Paleontological and Archaeological Sites?. Evolutionary Biology, 2010, 37, 128-140.	0.5	23
115	A spring and wooded habitat at FLK Zinj and their relevance to origins of human behavior. Quaternary Research, 2010, 74, 304-314.	1.0	62
116	Phytoliths infer locally dense and heterogeneous paleovegetation at FLK North and surrounding localities during upper Bed I time, Olduvai Gorge, Tanzania. Quaternary Research, 2010, 74, 344-354.	1.0	83
117	Configurational approach to identifying the earliest hominin butchers. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20929-20934.	3.3	175
118	Chimpanzee Referents and the Emergence of Human Hunting~!2009-09-29~!2010-01-21~!2010-03-12~!. The Open Anthropology Journal, 2010, 3, 107-113.	0.4	16
119	Palynology of OGS-6a and OGS-7, two new 2.6ÂMa archaeological sites from Gona, Afar, Ethiopia: Insights on aspects of Late Pliocene habitats and the beginnings of stone-tool use. Geobios, 2009, 42, 503-511.	0.7	9
120	Were Olduvai Hominins making butchering tools or battering tools? Analysis of a recently excavated lithic assemblage from BK (Bed II, Olduvai Gorge, Tanzania). Journal of Anthropological Archaeology, 2009, 28, 274-289.	0.7	97
121	Why are cut mark frequencies in archaeofaunal assemblages so variable? A multivariate analysis. Journal of Archaeological Science, 2009, 36, 884-894.	1.2	69
122	Are all Oldowan Sites Palimpsests? If so, what can they tell us about Hominid Carnivory?. Vertebrate Paleobiology and Paleoanthropology, 2009, , 129-147.	0.1	19
123	Taphonomic perspectives on hominid site use and foraging strategies during Bed II times at Olduvai Gorge, Tanzania. Journal of Human Evolution, 2008, 55, 1031-1052.	1.3	62
124	Conceptual premises in experimental design and their bearing on the use of analogy: an example from experiments on cut marks. World Archaeology, 2008, 40, 67-82.	0.5	54
125	Testing the "shift in the balance of power―hypothesis at Swartkrans, South Africa: Hominid cave use and subsistence behavior in the Early Pleistocene. Journal of Anthropological Archaeology, 2008, 27, 30-45.	0.7	60
126	Deconstructing Olduvai: A Taphonomic Study of the Bed I Sites. Vertebrate Paleobiology and Paleoanthropology, 2007, , .	0.1	92

#	Article	IF	CITATIONS
127	Cutmarked bones from Pliocene archaeological sites at Gona, Afar, Ethiopia: implications for the function of the world's oldest stone tools. Journal of Human Evolution, 2005, 48, 109-121.	1.3	224
128	Beyond leopards: tooth marks and the contribution of multiple carnivore taxa to the accumulation of the Swartkrans Member 3 fossil assemblage. Journal of Human Evolution, 2004, 46, 595-604.	1.3	98
129	Disentangling Early Stone Age palimpsests: determining the functional independence of hominid- and carnivore-derived portions of archaeofaunas. Journal of Human Evolution, 2004, 47, 343-357.	1.3	58
130	2.6-Million-year-old stone tools and associated bones from OGS-6 and OGS-7, Gona, Afar, Ethiopia. Journal of Human Evolution, 2003, 45, 169-177.	1.3	367
131	Early hominid hunting and scavenging: A zooarcheological review. Evolutionary Anthropology, 2003, 12, 275-282.	1.7	146
132	Hunting and Scavenging by Early Humans: The State of the Debate. Journal of World Prehistory, 2002, 16, 1-54.	1.1	210
133	Fossil pollen from the Upper Humbu Formation of Peninj (Tanzania): hominid adaptation to a dry open Plio-Pleistocene savanna environment. Journal of Human Evolution, 2001, 40, 151-157.	1.3	30
134	A study of carnivore competition in riparian and open habitats of modern savannas and its implications for hominid behavioral modelling. Journal of Human Evolution, 2001, 40, 77-98.	1.3	82
135	A reassessment of the study of cut mark patterns to infer hominid manipulation of fleshed carcasses at the Flk Zinj 22 site, Olduvai Gorge, Tanzania. Trabajos De Prehistoria, 1997, 54, 29-42.	0.2	34
136	Estudio etnoarqueológico de un campamento temporal Ndorobo (Maasai) en Kulalu (Kenia). Trabajos De Prehistoria, 1996, 53, 131-143.	0.2	13
137	Can we use chimpanzee behavior to model early hominin hunting?. , 0, , 174-198.		6
138	Meat foraging by Pleistocene African hominins. , 0, , 152-173.		7
139	Conceptual premises in experimental design and their bearing on the use of analogy. , 0, , 47-79.		2

140 How Meat Made us Human. , 0, , .

1