Francesco De Sanctis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5857010/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fatal cytokine release syndrome by an aberrant FLIP/STAT3 axis. Cell Death and Differentiation, 2022, 29, 420-438.	11.2	14
2	Interrupting the nitrosative stress fuels tumor-specific cytotoxic T lymphocytes in pancreatic cancer. , 2022, 10, e003549.		22
3	Breaking the Immune Complexity of the Tumor Microenvironment Using Single-Cell Technologies. Frontiers in Genetics, 2022, 13, .	2.3	3
4	Targeting Inhibition of Accumulation and Function of Myeloid-Derived Suppressor Cells by Artemisinin via PI3K/AKT, mTOR, and MAPK Pathways Enhances Anti-PD-L1 Immunotherapy in Melanoma and Liver Tumors. Journal of Immunology Research, 2022, 2022, 1-21.	2.2	6
5	Monocytes in the Tumor Microenvironment. Annual Review of Pathology: Mechanisms of Disease, 2021, 16, 93-122.	22.4	126
6	How to Reprogram Myeloma-Associated Macrophages: Target IKZF1. Cancer Immunology Research, 2021, 9, 254-254.	3.4	2
7	Deciphering the state of immune silence in fatal COVID-19 patients. Nature Communications, 2021, 12, 1428.	12.8	107
8	The immune modulatory effects of umbilical cord-derived mesenchymal stromal cells in severe COVID-19 pneumonia. Stem Cell Research and Therapy, 2021, 12, 316.	5.5	12
9	Maternal Phylogenetic Relationships and Genetic Variation among Rare, Phenotypically Similar Donkey Breeds. Genes, 2021, 12, 1109.	2.4	3
10	Intratumoral injection of TLR9 agonist promotes an immunopermissive microenvironment transition and causes cooperative antitumor activity in combination with anti-PD1 in pancreatic cancer. , 2021, 9, e002876.		25
11	Arginase 1–Based Immune Modulatory Vaccines Induce Anticancer Immunity and Synergize with Anti–PD-1 Checkpoint Blockade. Cancer Immunology Research, 2021, 9, 1316-1326.	3.4	32
12	A Complex Metabolic Network Confers Immunosuppressive Functions to Myeloid-Derived Suppressor Cells (MDSCs) within the Tumour Microenvironment. Cells, 2021, 10, 2700.	4.1	25
13	Disabled Homolog 2 Controls Prometastatic Activity of Tumor-Associated Macrophages. Cancer Discovery, 2020, 10, 1758-1773.	9.4	44
14	Organoid-Transplant Model Systems to Study the Effects of Obesity on the Pancreatic Carcinogenesis in vivo. Frontiers in Cell and Developmental Biology, 2020, 8, 308.	3.7	8
15	Tandem Dye-Doped Nanoparticles for NIR Imaging via Cerenkov Resonance Energy Transfer. Frontiers in Chemistry, 2020, 8, 71.	3.6	13
16	The Engagement Between MDSCs and Metastases: Partners in Crime. Frontiers in Oncology, 2020, 10, 165.	2.8	50
17	Baricitinib restrains the immune dysregulation in patients with severe COVID-19. Journal of Clinical Investigation, 2020, 130, 6409-6416.	8.2	213
18	Immunoevolution of mouse pancreatic organoid isografts from preinvasive to metastatic disease. Scientific Reports, 2019, 9, 12286.	3.3	27

FRANCESCO DE SANCTIS

#	Article	IF	CITATIONS
19	The Endless Saga of Monocyte Diversity. Frontiers in Immunology, 2019, 10, 1786.	4.8	67
20	Immunosuppression by monocytic myeloid-derived suppressor cells in patients with pancreatic ductal carcinoma is orchestrated by STAT3. , 2019, 7, 255.		123
21	Methods to Measure MDSC Immune Suppressive Activity <i>In Vitro</i> and <i>In Vivo</i> . Current Protocols in Immunology, 2019, 124, e61.	3.6	35
22	The dark side of tumor-associated endothelial cells. Seminars in Immunology, 2018, 35, 35-47.	5.6	82
23	Optical emission of ²²³ Radium: in vitro and in vivo preclinical applications. Journal of Biophotonics, 2018, 11, e201700209.	2.3	3
24	Induction of immunosuppressive functions and NF-κB by FLIP in monocytes. Nature Communications, 2018, 9, 5193.	12.8	45
25	Tâ€cell tracking using Cerenkov and radioluminescence imaging. Journal of Biophotonics, 2018, 11, e201800093.	2.3	13
26	Four-class tumor staging for early diagnosis and monitoring of murine pancreatic cancer using magnetic resonance and ultrasound. Carcinogenesis, 2018, 39, 1197-1206.	2.8	5
27	Hyperthermic treatment at 56â€ [−] °C induces tumour-specific immune protection in a mouse model of prostate cancer in both prophylactic and therapeutic immunization regimens. Vaccine, 2018, 36, 3708-3716.	3.8	11
28	Local endothelial complement activation reverses endothelial quiescence, enabling t-cell homing, and tumor control during t-cell immunotherapy. Oncolmmunology, 2017, 6, e1326442.	4.6	48
29	Overview of the optical properties of fluorescent nanoparticles for optical imaging. European Journal of Histochemistry, 2017, 61, 2830.	1.5	31
30	Anti-telomerase T cells adoptive transfer. Aging, 2017, 9, 2239-2240.	3.1	5
31	Effective control of acute myeloid leukaemia and acute lymphoblastic leukaemia progression by telomerase specific adoptive T-cell therapy. Oncotarget, 2017, 8, 86987-87001.	1.8	18
32	Tumor-Induced Myeloid-Derived Suppressor Cells. Microbiology Spectrum, 2016, 4, .	3.0	28
33	Feasibility of Telomerase-Specific Adoptive T-cell Therapy for B-cell Chronic Lymphocytic Leukemia and Solid Malignancies. Cancer Research, 2016, 76, 2540-2551.	0.9	25
34	MDSCs in cancer: Conceiving new prognostic and therapeutic targets. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1865, 35-48.	7.4	68
35	Autologous cellular vaccine overcomes cancer immunoediting in a mouse model of myeloma. Immunology, 2015, 146, 33-49.	4.4	5
36	A Tumor Mitochondria Vaccine Protects against Experimental Renal Cell Carcinoma. Journal of Immunology, 2015, 195, 4020-4027.	0.8	24

#	Article	IF	CITATIONS
37	Targeting tumor vasculature: expanding the potential of DNA cancer vaccines. Cancer Immunology, Immunotherapy, 2015, 64, 1339-1348.	4.2	19
38	Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. Journal of Clinical Investigation, 2015, 125, 3365-3376.	8.2	443
39	The Emerging Immunological Role of Post-Translational Modifications by Reactive Nitrogen Species in Cancer Microenvironment. Frontiers in Immunology, 2014, 5, 69.	4.8	58
40	Tumor endothelial marker 1–specific DNA vaccination targets tumor vasculature. Journal of Clinical Investigation, 2014, 124, 1497-1511.	8.2	59
41	Tumor-Induced Myeloid-Derived Suppressor Cells. , 0, , 833-856.		1