Arthur D Conigrave

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5856825/publications.pdf

Version: 2024-02-01

61977 85537 5,719 126 43 citations h-index papers

g-index 135 135 135 4920 docs citations times ranked citing authors all docs

71

#	Article	IF	CITATIONS
1	UVâ€induced DNA Damage in Skin is Reduced by CaSR Inhibition. Photochemistry and Photobiology, 2022, ,	2.5	3
2	The mTORC2 Regulator Homer1 Modulates Protein Levels and Sub-Cellular Localization of the CaSR in Osteoblast-Lineage Cells. International Journal of Molecular Sciences, 2021, 22, 6509.	4.1	7
3	Calcium-Sensing Receptors Control CYP27B1-Luciferase Expression: Transcriptional and Posttranscriptional Mechanisms. Journal of the Endocrine Society, 2021, 5, bvab057.	0.2	8
4	Symmetric activation and modulation of the human calcium-sensing receptor. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	23
5	Negative allosteric modulators of the human calciumâ€sensing receptor bind to overlapping and distinct sites within the 7â€ŧransmembrane domain. British Journal of Pharmacology, 2020, 177, 1917-1930.	5 . 4	12
6	International Union of Basic and Clinical Pharmacology. CVIII. Calcium-Sensing Receptor Nomenclature, Pharmacology, and Function. Pharmacological Reviews, 2020, 72, 558-604.	16.0	59
7	Cell Surface Calcium-Sensing Receptor Heterodimers: Mutant Gene Dosage Affects Ca2+ Sensing but Not G Protein Interaction. Journal of Bone and Mineral Research, 2020, 37, 1787-1807.	2.8	1
8	Homer1 mediates CaSR-dependent activation of mTOR complex 2 and initiates a novel pathway for AKT-dependent \hat{l}^2 -catenin stabilization in osteoblasts. Journal of Biological Chemistry, 2019, 294, 16337-16350.	3 . 4	17
9	Phosphate acts directly on the calcium-sensing receptor to stimulate parathyroid hormone secretion. Nature Communications, 2019, 10, 4693.	12.8	149
10	L-Amino Acids Promote Calcitonin Release via a Calcium-Sensing Receptor: $Gq/11$ -Mediated Pathway in Human C-Cells. Endocrinology, 2019, 160, 1590-1599.	2.8	11
11	Identification of Serine-875 as an Inhibitory Phosphorylation Site in the Calcium-Sensing Receptor. Molecular Pharmacology, 2019, 96, 204-211.	2.3	6
12	Determinants of vitamin D status of healthy office workers in Sydney, Australia. Journal of Steroid Biochemistry and Molecular Biology, 2019, 189, 127-134.	2.5	8
13	Calcium Disorders. , 2019, , 975-987.		O
14	Calcium-sensing receptor (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	2
15	Identification of Global and Ligand-Specific Calcium Sensing Receptor Activation Mechanisms. Molecular Pharmacology, 2018, 93, 619-630.	2.3	20
16	The endoplasmic reticulumâ€associated protein, OSâ€9, behaves as a lectin in targeting the immature calciumâ€sensing receptor. Journal of Cellular Physiology, 2018, 233, 38-56.	4.1	5
17	Dual Action Calcium-Sensing Receptor Modulator Unmasks Novel Mode-Switching Mechanism. ACS Pharmacology and Translational Science, 2018, 1, 96-109.	4.9	13
18	Physiological and pathophysiological roles of the calcium-sensing receptor. Pathology, 2017, 49, S16.	0.6	0

#	Article	IF	CITATIONS
19	The Calcium-Sensing Receptor and the Parathyroid: Past, Present, Future. Frontiers in Physiology, 2016, 7, 563.	2.8	72
20	Defining the Nutritional and Metabolic Context of FGF21ÂUsing the Geometric Framework. Cell Metabolism, 2016, 24, 555-565.	16.2	164
21	Towards a structural understanding of allosteric drugs at the human calcium-sensing receptor. Cell Research, 2016, 26, 574-592.	12.0	85
22	Raised FGF-21 and Triglycerides Accompany Increased Energy Intake Driven by Protein Leverage in Lean, Healthy Individuals: A Randomised Trial. PLoS ONE, 2016, 11, e0161003.	2.5	34
23	Structural mechanism of ligand activation in human calcium-sensing receptor. ELife, 2016, 5, .	6.0	189
24	Biased allosteric modulation at the <scp>CaS</scp> receptor engendered by structurally diverse calcimimetics. British Journal of Pharmacology, 2015, 172, 185-200.	5.4	71
25	Receptor Expression Modulates Calcium-Sensing Receptor Mediated Intracellular Ca ²⁺ Mobilization. Endocrinology, 2015, 156, 1330-1342.	2.8	20
26	Osteocalcin: An Osteoblast-Derived Polypeptide Hormone that Modulates Whole Body Energy Metabolism. Calcified Tissue International, 2015, 96, 1-10.	3.1	53
27	Towards tissue-specific pharmacology: insights from the calcium-sensing receptor as a paradigm for GPCR (patho)physiological bias. Trends in Pharmacological Sciences, 2015, 36, 215-225.	8.7	41
28	Pathophysiologic Changes in Extracellular pH Modulate Parathyroid Calcium-Sensing Receptor Activity and Secretion via a Histidine-Independent Mechanism. Journal of the American Society of Nephrology: JASN, 2015, 26, 2163-2171.	6.1	29
29	Engendering biased signalling from the calciumâ€sensing receptor for the pharmacotherapy of diverse disorders. British Journal of Pharmacology, 2014, 171, 1142-1155.	5.4	37
30	Protein leverage and energy intake. Obesity Reviews, 2014, 15, 183-191.	6.5	155
31	Roles of intraloopsâ€2 and â€3 and the proximal Câ€terminus in signalling pathway selection from the human calciumâ€sensing receptor. FEBS Letters, 2014, 588, 3340-3346.	2.8	13
32	Membrane flickering of the human erythrocyte: physical and chemical effectors. European Biophysics Journal, 2014, 43, 169-177.	2.2	12
33	Invasive toxic prey may imperil the survival of an iconic giant lizard, the Komodo dragon Pacific Conservation Biology, 2014, 20, 363.	1.0	5
34	From kinetics to imaging: an NMR odyssey—a festschrift symposium in honour of Philip William Kuchel. European Biophysics Journal, 2013, 42, 1-2.	2.2	2
35	Calcium-sensing receptor (CaSR): Pharmacological properties and signaling pathways. Best Practice and Research in Clinical Endocrinology and Metabolism, 2013, 27, 315-331.	4.7	180
36	ISOLATION BREEDS NAIVETY: ISLAND LIVING ROBS AUSTRALIAN VARANID LIZARDS OF TOAD-TOXIN IMMUNITY VIA FOUR-BASE-PAIR MUTATION. Evolution; International Journal of Organic Evolution, 2013, 67, 289-294.	2.3	47

3

#	Article	IF	Citations
37	Stoichiometric Relationship between Na+ Ions Transported and Glucose Consumed in Human Erythrocytes: Bayesian Analysis of 23Na and 13C NMR Time Course Data. Biophysical Journal, 2013, 104, 1676-1684.	0.5	14
38	Preface. Best Practice and Research in Clinical Endocrinology and Metabolism, 2013, 27, 283-284.	4.7	2
39	Impact of Clinically Relevant Mutations on the Pharmacoregulation and Signaling Bias of the Calcium-Sensing Receptor by Positive and Negative Allosteric Modulators. Endocrinology, 2013, 154, 1105-1116.	2.8	68
40	Effects of dietary protein to carbohydrate balance on energy intake, fat storage, and heat production in mice. Obesity, 2013, 21, 85-92.	3.0	62
41	Calcium-sensing receptor-dependent activation of CREB phosphorylation in HEK293 cells and human parathyroid cells. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E1097-E1104.	3.5	24
42	INTRODUCTION - Mechanism-based Development of Natural Products for Human Health. Journal of Pharmacy and Pharmaceutical Sciences, 2013, 16, 123.	2.1	0
43	Identification of Molecular Phenotypes and Biased Signaling Induced by Naturally Occurring Mutations of the Human Calcium-Sensing Receptor. Endocrinology, 2012, 153, 4304-4316.	2.8	72
44	The adaptor protein 14-3-3 binds to the calcium-sensing receptor and attenuates receptor-mediated Rho kinase signalling. Biochemical Journal, 2012, 441, 995-1007.	3.7	21
45	Positive and Negative Allosteric Modulators Promote Biased Signaling at the Calcium-Sensing Receptor. Endocrinology, 2012, 153, 1232-1241.	2.8	142
46	Quantitative model of NMR chemical shifts of 23Na+ induced by TmDOTP: Applications in studies of Na+ transport in human erythrocytes. Journal of Inorganic Biochemistry, 2012, 115, 211-219.	3.5	14
47	Regulation of Calcium and Phosphate Metabolism. , 2012, , 13-51.		2
48	Testin, a novel binding partner of the calcium-sensing receptor, enhances receptor-mediated Rho-kinase signalling. Biochemical and Biophysical Research Communications, 2011, 412, 584-589.	2.1	10
49	Testing Protein Leverage in Lean Humans: A Randomised Controlled Experimental Study. PLoS ONE, 2011, 6, e25929.	2.5	194
50	A novel mutation of the primary protein kinase C phosphorylation site in the calcium-sensing receptor causes autosomal dominant hypocalcemia. European Journal of Endocrinology, 2011, 164, 429-435.	3.7	25
51	Allosteric Modulation of the Calcium-sensing Receptor by \hat{I}^3 -Glutamyl Peptides. Journal of Biological Chemistry, 2011, 286, 8786-8797.	3.4	82
52	An Akt-dependent Increase in Canonical Wnt Signaling and a Decrease in Sclerostin Protein Levels Are Involved in Strontium Ranelate-induced Osteogenic Effects in Human Osteoblasts. Journal of Biological Chemistry, 2011, 286, 23771-23779.	3.4	97
53	Calcium-sensing Receptor Modulates Cell Adhesion and Migration via Integrins. Journal of Biological Chemistry, 2011, 286, 40922-40933.	3.4	59
54	Broad-spectrum amino acid-sensing class C G-protein coupled receptors: Molecular mechanisms, physiological significance and options for drug development., 2010, 127, 252-260.		68

#	Article	IF	CITATIONS
55	Mechanisms of multimodal sensing by extracellular Ca ²⁺ â€sensing receptors: a domainâ€based survey of requirements for binding and signalling. British Journal of Pharmacology, 2010, 159, 1039-1050.	5.4	26
56	Comparison of human chromosome 19q13 and syntenic region on mouse chromosome 7 reveals absence, in man, of 11.6 Mb containing four mouse calcium-sensing receptor-related sequences: relevance to familial benign hypocalciuric hypercalcaemia type 3. European Journal of Human Genetics, 2010, 18, 442-447.	2.8	8
57	The gastrointestinal tract as a nutrient-balancing organ. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1751-1759.	2.6	110
58	Vitamin D Deficiency Promotes Human Breast Cancer Growth in a Murine Model of Bone Metastasis. Cancer Research, 2010, 70, 1835-1844.	0.9	131
59	Increased Receptor Stimulation Elicits Differential Calcium-sensing ReceptorT888 Dephosphorylation. Journal of Biological Chemistry, 2010, 285, 14170-14177.	3.4	33
60	Vitamin D deficiency promotes growth of MCF-7 human breast cancer in a rodent model of osteosclerotic bone metastasis. Bone, 2010, 47, 795-803.	2.9	65
61	Design and testing of foods differing in protein to energy ratios. Appetite, 2010, 55, 367-370.	3.7	13
62	Adenomatous Human Parathyroid Cells Exhibit Impaired Sensitivity to <scp>l</scp> -Amino Acids. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 3567-3574.	3.6	11
63	Effectors of the frequency of calcium oscillations in HEK-293 cells: wavelet analysis and a computer model. European Biophysics Journal, 2009, 39, 149-165.	2.2	12
64	Osteoblasts play key roles in the mechanisms of action of strontium ranelate. British Journal of Pharmacology, 2009, 157, 1291-1300.	5. 4	206
65	Regulation of Cellular Signal Transduction Pathways by the Extracellular Calcium-Sensing Receptor. Current Pharmaceutical Biotechnology, 2009, 10, 270-281.	1.6	52
66	Heterogeneous expression of SNARE proteins SNAP-23, SNAP-25, Syntaxin1 and VAMP in human parathyroid tissue. Molecular and Cellular Endocrinology, 2008, 287, 72-80.	3.2	15
67	Dietary Protein and Bone Health: Roles of Amino Acid–Sensing Receptors in the Control of Calcium Metabolism and Bone Homeostasis. Annual Review of Nutrition, 2008, 28, 131-155.	10.1	91
68	<i>PTH</i> Mutation with Primary Hyperparathyroidism and Undetectable Intact PTH. New England Journal of Medicine, 2008, 359, 1184-1186.	27.0	37
69	Allosteric activation of the extracellular Ca2+-sensing receptor by L-amino acids enhances ERK1/2 phosphorylation. Biochemical Journal, 2007, 404, 141-149.	3.7	56
70	Physiological significance of <scp>L</scp> -amino acid sensing by extracellular Ca2+-sensing receptors. Biochemical Society Transactions, 2007, 35, 1195-1198.	3.4	47
71	l-Amino acid-sensing by calcium-sensing receptors: A molecular link between protein and calcium metabolism. International Congress Series, 2007, 1297, 198-203.	0.2	1
72	Aromatic I-Amino Acids Activate the Calcium-Sensing Receptor. Journal of Nutrition, 2007, 137, 1524S-1527S.	2.9	50

#	Article	IF	CITATIONS
73	Broad-spectrum l-amino acid sensing by class 3 G-protein-coupled receptors. Trends in Endocrinology and Metabolism, 2006, 17, 398-407.	7.1	89
74	Taste Receptors in the Gastrointestinal Tract II.l-Amino acid sensing by calcium-sensing receptors: implications for GI physiology. American Journal of Physiology - Renal Physiology, 2006, 291, G753-G761.	3.4	105
75	Surgery for hyperparathyroidism: Does morphology or function matter most?. Surgery, 2005, 138, 1111-1120.	1.9	31
76	A Double Mutation in the Extracellular Ca2+-sensing Receptor's Venus Flytrap Domain That Selectively Disables I-Amino Acid Sensing. Journal of Biological Chemistry, 2005, 280, 29067-29072.	3.4	57
77	L-Amino Acids Regulate Parathyroid Hormone Secretion. Journal of Biological Chemistry, 2004, 279, 38151-38159.	3.4	104
78	The Venus Fly Trap Domain of the Extracellular Ca2+-sensing Receptor Is Required for I-Amino Acid Sensing. Journal of Biological Chemistry, 2004, 279, 51739-51744.	3.4	92
79	ACTIVATION OF RENAL CALCIUM AND WATER EXCRETION BY NOVEL PHYSIOLOGICAL AND PHARMACOLOGICAL ACTIVATORS OF THE CALCIUM-SENSING RECEPTOR. Clinical and Experimental Pharmacology and Physiology, 2004, 31, 368-371.	1.9	15
80	Chelerythrine and other benzophenanthridine alkaloids block the human P2X7 receptor. British Journal of Pharmacology, 2004, 142, 1015-1019.	5.4	48
81	The Venus Fly Trap Domain of the Extracellular Ca2+-sensing Receptor Is Required for I-Amino Acid Sensing. Journal of Biological Chemistry, 2004, 279, 51739-51744.	3.4	73
82	Allosteric activation of plasma membrane receptorsâ€"physiological implications and structural origins. Progress in Biophysics and Molecular Biology, 2003, 81, 219-240.	2.9	13
83	Inhibition of glutamine transport depletes glutamate and GABA neurotransmitter pools: further evidence for metabolic compartmentation. Journal of Neurochemistry, 2003, 85, 503-514.	3.9	149
84	Autosomal Dominant Hypocalcemia: A Novel Activating Mutation (E604K) in the Cysteine-Rich Domain of the Calcium-Sensing Receptor. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 605-610.	3.6	38
85	Alternative Agonists and Modulators: Evidence that the Calcium-Sensing Receptor is a Multi-Modal Sensor. Growth Hormone, 2003, , 203-226.	0.2	3
86	Three Adjacent Serines in the Extracellular Domains of the CaR Are Required for I-Amino Acid-mediated Potentiation of Receptor Function. Journal of Biological Chemistry, 2002, 277, 33727-33735.	3.4	94
87	Localization of the Extracellular Ca2+-sensing Receptor in the Human Placenta. Placenta, 2002, 23, 192-200.	1.5	21
88	L-Amino acid sensing by the calcium-sensing receptor: a general mechanism for coupling protein and calcium metabolism?. European Journal of Clinical Nutrition, 2002, 56, 1072-1080.	2.9	90
89	Molecular mechanisms of receptor dysfunction: implications for endocrine disorders. Current Opinion in Endocrinology, Diabetes and Obesity, 2001, 8, 41-46.	0.6	0
90	P2Y11 receptor expression by human lymphocytes: evidence for two cAMP-linked purinoceptors. European Journal of Pharmacology, 2001, 426, 157-163.	3.5	31

#	Article	IF	CITATIONS
91	Receptors and Signaling for Calcium Ions. , 2001, , 127-142.		1
92	Signal transduction and white cell maturation via extracellular ATP and the P2Y11receptor. Immunology and Cell Biology, 2000, 78, 369-374.	2.3	29
93	Extracellular ATP couples to cAMP generation and granulocytic differentiation in human NB4 promyelocytic leukaemia cells. Immunology and Cell Biology, 2000, 78, 467-473.	2.3	19
94	Extracellular ATP-dependent suppression of proliferation and induction of differentiation of human HL-60 leukemia cells by distinct mechanisms. Biochemical Pharmacology, 2000, 60, 1585-1591.	4.4	38
95	Pharmacological characterisation of the P2Y11 receptor in stably transfected haematological cell lines. Molecular and Cellular Biochemistry, 2000, 213, 75-81.	3.1	42
96	<scp> </scp> -Amino acid sensing by the extracellular Ca ²⁺ -sensing receptor. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 4814-4819.	7.1	465
97	Extracellular ATP couples to cAMP generation and granulocytic differentiation in human NB4 promyelocytic leukaemia cells. Immunology and Cell Biology, 2000, 78, 467-473.	2.3	11
98	Cooperative multi-modal sensing and therapeutic implications of the extracellular Ca2+ sensing receptor. Trends in Pharmacological Sciences, 2000, 21, 401-407.	8.7	70
99	Transcriptional down-regulation of the rabbit pulmonary artery endothelin B receptor during phenotypic modulation. British Journal of Pharmacology, 1999, 126, 103-110.	5.4	7
100	Use of replication-deficient adenoviruses to study signal transduction pathways. Muscarinic responses in HSG and HT29 epithelial cell lines are mediated by G protein $\hat{l}^2\hat{l}^3$ -subunits. Pflugers Archiv European Journal of Physiology, 1999, 438, 79-85.	2.8	7
101	Genistein inhibits lysosomal enzyme release by suppressing Ca2+influx in HL-60 granulocytes. Cell Calcium, 1999, 25, 69-76.	2.4	3
102	Pharmacological profile of a novel cyclic AMP-linked P2 receptor on undifferentiated HL-60 leukemia cells. British Journal of Pharmacology, 1998, 124, 1580-1585.	5.4	34
103	A 96-well plate assay for the study of calmodulin-activated Ca2+-pumping ATPase from red-cell membranes. Biochemical Education, 1998, 26, 176-181.	0.1	3
104	Expression of the parathyroid Ca(2+)-sensing receptor in cytotrophoblasts from human term placenta. Journal of Endocrinology, 1998, 156, 425-430.	2.6	56
105	Extracellular ATP Triggers Cyclic AMP-Dependent Differentiation of HL-60 Cells. Biochemical and Biophysical Research Communications, 1997, 232, 626-630.	2.1	46
106	Extracellular ATP Triggers Cyclic AMP-Dependent Differentiation of HL-60 Cells. Biochemical and Biophysical Research Communications, 1997, 236, 223.	2.1	0
107	Characterization of the P2 receptors in rabbit pulmonary artery. British Journal of Pharmacology, 1997, 120, 553-558.	5.4	23
108	Thiophosphate Induces Apoptosis in Human Leukemia Cell Lines. Biochemical and Biophysical Research Communications, 1996, 219, 393-397.	2.1	6

#	Article	IF	CITATIONS
109	ATP-induced \hat{l}^2 -glucuronidase release from undifferentiated HL-60 cells is dependent on Ca2+ ions. Cellular Signalling, 1996, 8, 67-73.	3.6	2
110	Functional heterogeneity of human term cytotrophoblasts revealed by differential sensitivity to extracellular Ca2+ and nucleotides. Journal of Endocrinology, 1996, 149, 135-144.	2.6	15
111	Review: Ca2+-mobilizing receptors for ATP and UTP. Cell Calcium, 1995, 17, 111-119.	2.4	46
112	Arachidonate and other fatty acids mobilize Ca2+ ions and stimulate \hat{l}^2 -glucuronidase release in a Ca2+-dependent fashion from undifferentiated HL-60 cells. Cell Calcium, 1995, 17, 399-408.	2.4	25
113	Pharmacological characterization of the nucleotide receptors that mobilize Ca2+ ions in human parathyroid cells. Journal of Endocrinology, 1994, 142, 277-283.	2.6	13
114	Intracellular Ca2+ inactivates an outwardly rectifying K+ current in human adenomatous parathyroid cells. Pflugers Archiv European Journal of Physiology, 1994, 426, 320-327.	2.8	12
115	A nucleotide receptor that mobilizes Ca ²⁺ in the mouse submandibular salivary cell line ST ₈₈₅ . British Journal of Pharmacology, 1994, 111, 1135-1139.	5.4	22
116	An inwardly rectifying K+ channel in human adenomatous parathyroid cells. Cell Calcium, 1993, 14, 517-523.	2.4	7
117	A purification strategy for inositol 1,4,5-trisphosphate 3-kinase from rat liver based upon heparin interaction chromatography. Cellular Signalling, 1992, 4, 303-312.	3.6	13
118	Association of vanadate-sensitive Mg2+-ATPase and shape change in intact red blood cells. Journal of Cellular Biochemistry, 1991, 46, 284-290.	2.6	15
119	Persistent Ca2+-induced activation of erythrocyte membrane Ca2+-ATPase unrelated to calpain proteolysis. Archives of Biochemistry and Biophysics, 1990, 279, 78-86.	3.0	8
120	Ca2+ and calmodulin-sensitive inositol trisphosphate kinase from bovine parathyroid. Cell Calcium, 1989, 10, 543-550.	2.4	6
121	Proteinuria and renal function in diabetic patients fed a diet moderately restricted in protein. American Journal of Clinical Nutrition, 1988, 48, 230-234.	4.7	9
122	The role of buffer anions and protons in secretion by the rabbit mandibular salivary gland Journal of Physiology, 1982, 322, 273-286.	2.9	35
123	Stimulation by calmodulin of Ca2+ uptake and (Ca2+-Mg2+) ATPase activity in membrane fractions from ox neurohypophyses. Cell Calcium, 1981, 2, 125-136.	2.4	15
124	Electrolyte and protein secretion by the perfused rabbit mandibular gland stimulated with acetylcholine or catecholamines. Journal of Physiology, 1980, 300, 467-487.	2.9	74
125	CALMODULIN REGULATION OF 45Ca2+ UPTAKE BY SUBCELLULAR FRACTIONS IN THE NEUROHYPOPHYSIS. Annals of the New York Academy of Sciences, 1980, 356, 363-364.	3.8	0
126	TRANSPORT OF BICARBONATE AND OTHER ANIONS IN SALIVARY SECRETION. Annals of the New York Academy of Sciences, 1980, 341, 172-190.	3.8	14