
Flavio Curnis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5856613/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Novel RGD-4C-Saporin Conjugate Inhibits Tumor Growth in Mouse Models of Bladder Cancer. Frontiers in Oncology, 2022, 12, 846958.	2.8	3
2	Targeting the Blood–Brain Tumor Barrier with Tumor Necrosis Factor-α. Pharmaceutics, 2022, 14, 1414.	4.5	4
3	Nanogold Functionalized With Lipoamide-isoDGR: A Simple, Robust and Versatile Nanosystem for αvβ3-Integrin Targeting. Frontiers in Chemistry, 2021, 9, 690357.	3.6	2
4	Enhancement of doxorubicin anti-cancer activity by vascular targeting using IsoDGR/cytokine-coated nanogold. Journal of Nanobiotechnology, 2021, 19, 128.	9.1	13
5	Oxidized/deamidated-ceruloplasmin dysregulates choroid plexus epithelial cells functionality and barrier properties via RGD-recognizing integrin binding. Neurobiology of Disease, 2021, 158, 105474.	4.4	2
6	Ceruloplasmin oxidized and deamidated by Parkinson's disease cerebrospinal fluid induces epithelial cells proliferation arrest and apoptosis. Scientific Reports, 2020, 10, 15507.	3.3	7
7	NGR-TNF Engineering with an N-Terminal Serine Reduces Degradation and Post-Translational Modifications and Improves Its Tumor-Targeting Activity. Molecular Pharmaceutics, 2020, 17, 3813-3824.	4.6	6
8	Improving the antitumor activity of R-CHOP with NGR-hTNF in primary CNS lymphoma: final results of a phase 2 trial. Blood Advances, 2020, 4, 3648-3658.	5.2	24
9	Circulating Chromogranin A Is Cleaved Into Vasoregulatory Fragments in Patients With Pancreatic Ductal Adenocarcinoma. Frontiers in Oncology, 2020, 10, 613582.	2.8	2
10	Boosting Interleukinâ€12 Antitumor Activity and Synergism with Immunotherapy by Targeted Delivery with isoDGRâ€Tagged Nanogold. Small, 2019, 15, e1903462.	10.0	21
11	Overcoming Biological Barriers in Neuroblastoma Therapy: The Vascular Targeting Approach with Liposomal Drug Nanocarriers. Small, 2019, 15, e1804591.	10.0	34
12	R-CHOP preceded by blood-brain barrier permeabilization with engineered tumor necrosis factor-α in primary CNS lymphoma. Blood, 2019, 134, 252-262.	1.4	43
13	Spatiotemporal Regulation of Tumor Angiogenesis by Circulating Chromogranin A Cleavage and Neuropilin-1 Engagement. Cancer Research, 2019, 79, 1925-1937.	0.9	9
14	The Importance of Detail: How Differences in Ligand Structures Determine Distinct Functional Responses in Integrin α v β 3. Chemistry - A European Journal, 2019, 25, 5959-5970.	3.3	10
15	A stapled chromogranin A-derived peptide is a potent dual ligand for integrins αvβ6 and αvβ8. Chemical Communications, 2019, 55, 14777-14780.	4.1	5
16	Targeting Tumor Vasculature with TNF Leads Effector T Cells to the Tumor and Enhances Therapeutic Efficacy of Immune Checkpoint Blockers in Combination with Adoptive Cell Therapy. Clinical Cancer Research, 2018, 24, 2171-2181.	7.0	40
17	Enhancement of Tumor Homing by Chemotherapy‣oaded Nanoparticles. Small, 2018, 14, e1802886.	10.0	23
18	A critical assessment of force field accuracy against NMR data for cyclic peptides containing β-amino acids. Physical Chemistry Chemical Physics, 2018, 20, 15807-15816.	2.8	9

#	Article	IF	CITATIONS
19	Succinimide-Based Conjugates Improve IsoDGR Cyclopeptide Affinity to α _v β ₃ without Promoting Integrin Allosteric Activation. Journal of Medicinal Chemistry, 2018, 61, 7474-7485.	6.4	19
20	Abstract 3879: Enhancement of tumor penetration by drug-loaded nanoparticles: An innovative targeted strategy for neuroblastoma. , 2018, , .		0
21	Targeting CD13 with Asn-Gly-Arg (NGR) Peptide-Drug Conjugates. , 2017, , 101-122.		5
22	Glycine <i>N</i> â€Methylation in NGRâ€Tagged Nanocarriers Prevents Isoaspartate Formation and Integrin Binding without Impairing CD13 Recognition and Tumor Homing. Advanced Functional Materials, 2017, 27, 1701245.	14.9	19
23	Chromogranin A in Endothelial Homeostasis and Angiogenesis. UNIPA Springer Series, 2017, , 83-98.	0.1	0
24	T Cells Redirected to a Minor Histocompatibility Antigen Instruct Intratumoral TNFα Expression and Empower Adoptive Cell Therapy for Solid Tumors. Cancer Research, 2017, 77, 658-671.	0.9	30
25	Abstract 5130: Tumor-penetrating peptide-coated nanoparticles as a novel strategy for the targeted therapy of neuroblastoma. , 2017, , .		0
26	Chromogranin A Is Preferentially Cleaved into Proangiogenic Peptides in the Bone Marrow of Multiple Myeloma Patients. Cancer Research, 2016, 76, 1781-1791.	0.9	24
27	NGR-tagged nano-gold: A new CD13-selective carrier for cytokine delivery to tumors. Nano Research, 2016, 9, 1393-1408.	10.4	48
28	Regulation of tumor growth by circulating full-length chromogranin A. Oncotarget, 2016, 7, 72716-72732.	1.8	18
29	Ceruloplasmin functional changes in Parkinson's disease-cerebrospinal fluid. Molecular Neurodegeneration, 2015, 10, 59.	10.8	35
30	Neuroblastoma-targeted nanocarriers improve drug delivery and penetration, delay tumor growth and abrogate metastatic diffusion. Biomaterials, 2015, 68, 89-99.	11.4	36
31	Abstract 4387: Anti-tumor activity of TNF-gold nanodrugs tagged with tumor vasculature-homing peptides containing the NGR or isoDGR motives. Cancer Research, 2015, 75, 4387-4387.	0.9	3
32	Oxidation-induced Structural Changes of Ceruloplasmin Foster NGR Motif Deamidation That Promotes Integrin Binding and Signaling. Journal of Biological Chemistry, 2014, 289, 3736-3748.	3.4	28
33	Abstract 1778: Characterization and anti-tumor functionality of a neuroblastoma-specific peptide, either free or conjugated to nanocarriers. , 2014, , .		0
34	Peptide-Mediated Targeting of Cytokines to Tumor Vasculature: The NGR-hTNF Example. BioDrugs, 2013, 27, 591-603.	4.6	63
35	Novel phage display-derived neuroblastoma-targeting peptides potentiate the effect of drug nanocarriers in preclinical settings. Journal of Controlled Release, 2013, 170, 233-241.	9.9	41
36	A new chromogranin A–dependent angiogenic switch activated by thrombin. Blood, 2013, 121, 392-402.	1.4	68

#	Article	IF	CITATIONS
37	Selective Imaging of the Angiogenic Relevant Integrins α5β1 and αvβ3. Angewandte Chemie - International Edition, 2013, 52, 11656-11659.	13.8	43
38	lsoDCRâ€Tagged Albumin: A New αvβ3 Selective Carrier for Nanodrug Delivery to Tumors. Small, 2013, 9, 673-678.	10.0	33
39	Abstract 5620: Novel phage display-derived neuroblastoma-targeting peptides potentiate the effect of drug nanocarriers in preclinical settings , 2013, , .		0
40	Abstract 5617: A new alphaV/beta3 integrin selective carrier for nanodrug delivery to tumors based on isoDGR-tagged albumin , 2013, , .		0
41	Targeting TNF-α to Neoangiogenic Vessels Enhances Lymphocyte Infiltration in Tumors and Increases the Therapeutic Potential of Immunotherapy. Journal of Immunology, 2012, 188, 2687-2694.	0.8	128
42	Chromogranin A binds to $\hat{l}\pm\nu\hat{l}^2$ 6-integrin and promotes wound healing in mice. Cellular and Molecular Life Sciences, 2012, 69, 2791-2803.	5.4	17
43	Targeted Drug Delivery and Penetration Into Solid Tumors. Medicinal Research Reviews, 2012, 32, 1078-1091.	10.5	108
44	Tumor Vasculature Targeting Through NGR Peptide-Based Drug Delivery Systems. Current Pharmaceutical Biotechnology, 2011, 12, 1128-1134.	1.6	62
45	Isoaspartate-dependent molecular switches for integrin–ligand recognition. Journal of Cell Science, 2011, 124, 515-522.	2.0	75
46	Chromogranin A Restricts Drug Penetration and Limits the Ability of NGR-TNF to Enhance Chemotherapeutic Efficacy. Cancer Research, 2011, 71, 5881-5890.	0.9	23
47	Abstract 426: The molecular microenvironment critically affects the formation of isoDGR-dependent integrin binding sites in fibronectin. , 2011, , .		0
48	Abstract 3625: Novel phage-display derived peptides for tumor- and vasculature-targeted therapies in neuroblastoma. , 2011, , .		0
49	Role of vasostatin-1 C-terminal region in fibroblast cell adhesion. Cellular and Molecular Life Sciences, 2010, 67, 2107-2118.	5.4	16
50	Combined targeting of perivascular and endothelial tumor cells enhances anti-tumor efficacy of liposomal chemotherapy in neuroblastoma. Journal of Controlled Release, 2010, 145, 66-73.	9.9	78
51	Critical Role of Flanking Residues in NGR-to-isoDGR Transition and CD13/Integrin Receptor Switching. Journal of Biological Chemistry, 2010, 285, 9114-9123.	3.4	77
52	Abstract 1453: Effect of systemic administration of chromogranin A on tumor metastatization in animal models. , 2010, , .		0
53	Structural Basis for the Interaction of isoDGR with the RGD-binding Site of αvβ3 Integrin. Journal of Biological Chemistry, 2008, 283, 19757-19768.	3.4	93
54	Synergistic Damage of Tumor Vessels with Ultra Low-Dose Endothelial-Monocyte Activating Polypeptide-II and Neovasculature-Targeted Tumor Necrosis Factor-α. Cancer Research, 2008, 68, 1154-1161.	0.9	45

#	Article	IF	CITATIONS
55	Critical role of indoleamine 2,3-dioxygenase in tumor resistance to repeated treatments with targeted IFNÂ. Molecular Cancer Therapeutics, 2008, 7, 3859-3866.	4.1	25
56	lsoaspartate-Glycine-Arginine: A New Tumor Vasculature–Targeting Motif. Cancer Research, 2008, 68, 7073-7082.	0.9	71
57	The neovasculature homing motif NGR: more than meets the eye. Blood, 2008, 112, 2628-2635.	1.4	181
58	Myocardial production of chromogranin A in human heart: a new regulatory peptide of cardiac function. European Heart Journal, 2007, 28, 1117-1127.	2.2	160
59	Immunogenic and structural properties of the Asn-Gly-Arg (NGR) tumor neovasculature-homing motif. Molecular Immunology, 2006, 43, 1509-1518.	2.2	49
60	Synergistic Antitumor Activity of Cisplatin, Paclitaxel, and Gemcitabine with Tumor Vasculature-Targeted Tumor Necrosis Factor-α. Clinical Cancer Research, 2006, 12, 175-182.	7.0	141
61	Spontaneous Formation of L-Isoaspartate and Gain of Function in Fibronectin. Journal of Biological Chemistry, 2006, 281, 36466-36476.	3.4	176
62	Targeted Delivery of IFNÎ ³ to Tumor Vessels Uncouples Antitumor from Counterregulatory Mechanisms. Cancer Research, 2005, 65, 2906-2913.	0.9	87
63	Chromogranin A protects vessels against tumor necrosis factor αâ€induced vascular leakage. FASEB Journal, 2004, 18, 554-556.	0.5	102
64	Coupling Tumor Necrosis Factor-α with αV Integrin Ligands Improves Its Antineoplastic Activity. Cancer Research, 2004, 64, 565-571.	0.9	134
65	Production and Characterization of Recombinant Human and Murine TNF. , 2004, 98, 009-022.		7
66	Crucial Role for Interferon Î ³ in the Synergism between Tumor Vasculature-Targeted Tumor Necrosis Factor α (NGR-TNF) and Doxorubicin. Cancer Research, 2004, 64, 7150-7155.	0.9	66
67	Cleavage of Chromogranin A N-terminal Domain by Plasmin Provides a New Mechanism for Regulating Cell Adhesion. Journal of Biological Chemistry, 2002, 277, 45911-45919.	3.4	32
68	Structure-Activity Relationships of Linear and Cyclic Peptides Containing the NGR Tumor-homing Motif. Journal of Biological Chemistry, 2002, 277, 47891-47897.	3.4	159
69	Regulation of Endothelial Cell Shape and Barrier Function by Chromogranin A. Annals of the New York Academy of Sciences, 2002, 971, 355-358.	3.8	31
70	Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration. Journal of Clinical Investigation, 2002, 110, 475-482.	8.2	206
71	Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration. Journal of Clinical Investigation, 2002, 110, 475-482.	8.2	111
72	Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration. Journal of Clinical Investigation, 2002, 110, 475-482.	8.2	32

#	Article	IF	CITATIONS
73	Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels, epithelia, and myeloid cells. Cancer Research, 2002, 62, 867-74.	0.9	217
74	Chromogranin A expression in neoplastic cells affects tumor growth and morphogenesis in mouse models. Cancer Research, 2002, 62, 941-6.	0.9	39
75	Roles of tumor necrosis factor p55 and p75 receptors in TNF-α-induced vascular permeability. American Journal of Physiology - Cell Physiology, 2001, 281, C1173-C1179.	4.6	80
76	Biotinylation Sites of Tumor Necrosis Factor-α Determined by Liquid Chromatography–Mass Spectrometry. Analytical Biochemistry, 2001, 298, 181-188.	2.4	8
77	Structure-Activity Relationships of Chromogranin A in Cell Adhesion. Journal of Biological Chemistry, 2000, 275, 29257-29263.	3.4	70
78	Enhancement of tumor necrosis factor \hat{I}_{\pm} antitumor immunotherapeutic properties by targeted delivery to aminopeptidase N (CD13). Nature Biotechnology, 2000, 18, 1185-1190.	17.5	403
79	Caspase inhibition reveals functional cooperation between p55- and p75-TNF receptors in cell necrosis. European Cytokine Network, 2000, 11, 580-8.	2.0	13
80	Tumor pretargeting with avidin improves the therapeutic index of biotinylated tumor necrosis factor alpha in mouse models. Cancer Research, 1999, 59, 2917-23.	0.9	46
81	Biochemical characterization and crystal structure of a recombinant hen avidin and its acidic mutant expressed in Escherichia coli. FEBS Journal, 1998, 256, 453-460.	0.2	36
82	Tumor targeting with biotinylated tumor necrosis factor alpha: structure-activity relationships and mechanism of action on avidin pretargeted tumor cells. Cancer Research, 1998, 58, 3866-72.	0.9	18
83	Production and Structure Characterization of Recombinant Chromogranin A N-Terminal Fragments (Vasostatins). Evidence of Dimmer-Monomer Equilibria. FEBS Journal, 1997, 248, 692-699.	0.2	44