
Thomas E Scammell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5856568/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Narcolepsy in orexin Knockout Mice. Cell, 1999, 98, 437-451.	28.9	2,981
2	Hypothalamic regulation of sleep and circadian rhythms. Nature, 2005, 437, 1257-1263.	27.8	2,285
3	The sleep switch: hypothalamic control of sleep and wakefulness. Trends in Neurosciences, 2001, 24, 726-731.	8.6	1,474
4	Sleep State Switching. Neuron, 2010, 68, 1023-1042.	8.1	1,141
5	Neural Circuitry of Wakefulness and Sleep. Neuron, 2017, 93, 747-765.	8.1	614
6	Fos Expression in Orexin Neurons Varies with Behavioral State. Journal of Neuroscience, 2001, 21, 1656-1662.	3.6	601
7	Afferents to the orexin neurons of the rat brain. Journal of Comparative Neurology, 2006, 494, 845-861.	1.6	520
8	Critical Role of Dorsomedial Hypothalamic Nucleus in a Wide Range of Behavioral Circadian Rhythms. Journal of Neuroscience, 2003, 23, 10691-10702.	3.6	482
9	Melanopsin in cells of origin of the retinohypothalamic tract. Nature Neuroscience, 2001, 4, 1165-1165.	14.8	467
10	Afferents to the Ventrolateral Preoptic Nucleus. Journal of Neuroscience, 2002, 22, 977-990.	3.6	439
11	Narcolepsy. New England Journal of Medicine, 2015, 373, 2654-2662.	27.0	368
12	Orexin (Hypocretin) Neurons Contain Dynorphin. Journal of Neuroscience, 2001, 21, RC168-RC168.	3.6	365
13	Narcolepsy — clinical spectrum, aetiopathophysiology, diagnosis and treatment. Nature Reviews Neurology, 2019, 15, 519-539.	10.1	364
14	Behavioral State Instability in Orexin Knock-Out Mice. Journal of Neuroscience, 2004, 24, 6291-6300.	3.6	360
15	Homeostatic, circadian, and emotional regulation of sleep. Journal of Comparative Neurology, 2005, 493, 92-98.	1.6	336
16	Distribution of fos-like immunoreactivity in the rat brain following intravenous lipopolysaccharide administration. , 1996, 371, 85-103.		294
17	Orexin Receptors: Pharmacology and Therapeutic Opportunities. Annual Review of Pharmacology and Toxicology, 2011, 51, 243-266.	9.4	293
18	Sleep modulates haematopoiesis and protects against atherosclerosis. Nature, 2019, 566, 383-387.	27.8	279

#	Article	IF	CITATIONS
19	Intravenous lipopolysaccharide induces cyclooxygenase 2-like immunoreactivity in rat brain perivascular microglia and meningeal macrophages. , 1997, 381, 119-129.		248
20	The neurobiology, diagnosis, and treatment of narcolepsy. Annals of Neurology, 2003, 53, 154-166.	5.3	248
21	Common scale-invariant patterns of sleep-wake transitions across mammalian species. Proceedings of the United States of America, 2004, 101, 17545-17548.	7.1	231
22	Sleep Neurobiology from a Clinical Perspective. Sleep, 2011, 34, 845-58.	1.1	203
23	Loss of hypocretin (orexin) neurons with traumatic brain injury. Annals of Neurology, 2009, 66, 555-559.	5.3	179
24	Galanin neurons in the ventrolateral preoptic area promote sleep and heat loss in mice. Nature Communications, 2018, 9, 4129.	12.8	176
25	Dynamic GABAergic afferent modulation of AgRP neurons. Nature Neuroscience, 2016, 19, 1628-1635.	14.8	165
26	Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice. Journal of Neuroscience, 2017, 37, 1352-1366.	3.6	156
27	The neurobiological basis of narcolepsy. Nature Reviews Neuroscience, 2019, 20, 83-93.	10.2	151
28	Challenges in Diagnosing Narcolepsy without Cataplexy: A Consensus Statement. Sleep, 2014, 37, 1035-1042.	1.1	145
29	A Consensus Definition of Cataplexy in Mouse Models of Narcolepsy. Sleep, 2009, 32, 111-116.	1.1	144
30	Relationship of EP1-4 prostaglandin receptors with rat hypothalamic cell groups involved in lipopolysaccharide fever responses. Journal of Comparative Neurology, 2000, 428, 20-32.	1.6	131
31	Increase of histaminergic tuberomammillary neurons in narcolepsy. Annals of Neurology, 2013, 74, 794-804.	5.3	127
32	Orexin receptor 2 expression in the posterior hypothalamus rescues sleepiness in narcoleptic mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4471-4476.	7.1	122
33	Decreased alertness due to sleep loss increases pain sensitivity in mice. Nature Medicine, 2017, 23, 768-774.	30.7	119
34	Narcolepsy: Neural Mechanisms of Sleepiness and Cataplexy. Journal of Neuroscience, 2012, 32, 12305-12311.	3.6	117
35	Mathematical Model of Network Dynamics Governing Mouse Sleep–Wake Behavior. Journal of Neurophysiology, 2007, 97, 3828-3840.	1.8	113
36	Control of arousal by the orexin neurons. Current Opinion in Neurobiology, 2013, 23, 752-759.	4.2	107

THOMAS E SCAMMELL

#	Article	IF	CITATIONS
37	Running Promotes Wakefulness and Increases Cataplexy in Orexin Knockout Mice. Sleep, 2007, 30, 1417-1425.	1.1	105
38	Abnormal Sleep/Wake Dynamics in Orexin Knockout Mice. Sleep, 2010, 33, 297-306.	1.1	104
39	Wake-related activity of tuberomammillary neurons in rats. Brain Research, 2003, 992, 220-226.	2.2	99
40	Amygdala Lesions Reduce Cataplexy in Orexin Knock-Out Mice. Journal of Neuroscience, 2013, 33, 9734-9742.	3.6	98
41	Orexin Neurons Are Necessary for the Circadian Control of REM Sleep. Sleep, 2009, 32, 1127-1134.	1.1	94
42	Role of the Medial Prefrontal Cortex in Cataplexy. Journal of Neuroscience, 2013, 33, 9743-9751.	3.6	93
43	Focal Deletion of the Adenosine A1 Receptor in Adult Mice Using an Adeno-Associated Viral Vector. Journal of Neuroscience, 2003, 23, 5762-5770.	3.6	92
44	Sleep neurobiology for the clinician. Sleep, 2004, 27, 811-20.	1.1	92
45	Listening to the Patient Voice in Narcolepsy: Diagnostic Delay, Disease Burden, and Treatment Efficacy. Journal of Clinical Sleep Medicine, 2017, 13, 419-425.	2.6	88
46	Genetic identity of thermosensory relay neurons in the lateral parabrachial nucleus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R41-R54.	1.8	85
47	Optogenetic-Mediated Release of Histamine Reveals Distal and Autoregulatory Mechanisms for Controlling Arousal. Journal of Neuroscience, 2014, 34, 6023-6029.	3.6	82
48	A consensus definition of cataplexy in mouse models of narcolepsy. Sleep, 2009, 32, 111-6.	1.1	77
49	Histamine: neural circuits and new medications. Sleep, 2019, 42, .	1.1	71
50	Complementary roles of gasotransmitters CO and H ₂ S in sleep apnea. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1413-1418.	7.1	65
51	Damage to histaminergic tuberomammillary neurons and other hypothalamic neurons with traumatic brain injury. Annals of Neurology, 2015, 77, 177-182.	5.3	62
52	GABAergic Neurons of the Central Amygdala Promote Cataplexy. Journal of Neuroscience, 2017, 37, 3995-4006.	3.6	55
53	Basal forebrain subcortical projections. Brain Structure and Function, 2019, 224, 1097-1117.	2.3	54
54	Diurnal Variation in CSF Orexin-A in Healthy Male Subjects. Sleep, 2006, 29, 295-297.	1.1	53

THOMAS E SCAMMELL

#	Article	IF	CITATIONS
55	Reward-Seeking Behavior in Human Narcolepsy. Journal of Clinical Sleep Medicine, 2011, 07, 293-300.	2.6	50
56	Orexin Gene Therapy Restores the Timing and Maintenance of Wakefulness in Narcoleptic Mice. Sleep, 2013, 36, 1129-1138.	1.1	47
57	Sleep Neurobiology for the Clinician. Sleep, 2004, , .	1.1	46
58	Cataplexy and Its Mimics: Clinical Recognition and Management. Current Treatment Options in Neurology, 2017, 19, 23.	1.8	42
59	SCOPRISM: A new algorithm for automatic sleep scoring in mice. Journal of Neuroscience Methods, 2014, 235, 277-284.	2.5	41
60	Delusional Confusion of Dreaming and Reality in Narcolepsy. Sleep, 2014, 37, 419-422.	1.1	41
61	Progressive Loss of the Orexin Neurons Reveals Dual Effects on Wakefulness. Sleep, 2016, 39, 369-377.	1.1	39
62	Melanin-concentrating hormone neurons contribute to dysregulation of rapid eye movement sleep in narcolepsy. Neurobiology of Disease, 2018, 120, 12-20.	4.4	34
63	Regulation of hippocampal dendritic spines following sleep deprivation. Journal of Comparative Neurology, 2020, 528, 380-388.	1.6	33
64	Reassessing the Role of Histaminergic Tuberomammillary Neurons in Arousal Control. Journal of Neuroscience, 2019, 39, 8929-8939.	3.6	32
65	Systems Genomics Identifies a Key Role forÂHypocretin/Orexin Receptor-2 in Human Heart Failure. Journal of the American College of Cardiology, 2015, 66, 2522-2533.	2.8	31
66	Damage to Arousal-Promoting Brainstem Neurons with Traumatic Brain Injury. Sleep, 2016, 39, 1249-1252.	1.1	31
67	Critical Dynamics and Coupling in Bursts of Cortical Rhythms Indicate Non-Homeostatic Mechanism for Sleep-Stage Transitions and Dual Role of VLPO Neurons in Both Sleep and Wake. Journal of Neuroscience, 2020, 40, 171-190.	3.6	31
68	Descending projections from the basal forebrain to the orexin neurons in mice. Journal of Comparative Neurology, 2017, 525, 1668-1684.	1.6	27
69	A circuit perspective on narcolepsy. Sleep, 2020, 43, .	1.1	27
70	Suppression of Locomotor Activity in Female C57Bl/6J Mice Treated with Interleukin-1β: Investigating a Method for the Study of Fatigue in Laboratory Animals. PLoS ONE, 2015, 10, e0140678.	2.5	27
71	Usefulness of a Nocturnal SOREMP for Diagnosing Narcolepsy with Cataplexy in a Pediatric Population. Sleep, 2015, 38, 859-65.	1.1	26
72	Do enteric neurons make hypocretin?. Regulatory Peptides, 2008, 147, 1-3.	1.9	24

THOMAS E SCAMMELL

#	Article	IF	CITATIONS
73	Dual orexin receptor antagonists increase sleep and cataplexy in wild type mice. Sleep, 2020, 43, .	1.1	24
74	Insight Into Reduction of Wakefulness by Suvorexant in Patients With Insomnia: Analysis of Wake Bouts. Sleep, 2018, 41, .	1.1	23
75	Dysregulation of Sleep Behavioral States in Narcolepsy. Sleep, 2017, 40, .	1.1	22
76	Defining disrupted nighttime sleep and assessing its diagnostic utility for pediatric narcolepsy type 1. Sleep, 2020, 43, .	1.1	21
77	Overview of Sleep. Journal of Clinical Psychiatry, 2015, 76, e13-e13.	2.2	21
78	Emerging therapeutics in sleep. Annals of Neurology, 2013, 74, 435-440.	5.3	18
79	Stability of nocturnal wake and sleep stages defines central nervous system disorders of hypersomnolence. Sleep, 2021, 44, .	1.1	18
80	ls Low Histamine a Fundamental Cause of Sleepiness in Narcolepsy and Idiopathic Hypersomnia?. Sleep, 2009, 32, 133-134.	1.1	17
81	Children with Narcolepsy type 1 have increased Tâ€cell responses to orexins. Annals of Clinical and Translational Neurology, 2019, 6, 2566-2572.	3.7	17
82	Bradysomnia in Parkinson's disease. Clinical Neurophysiology, 2016, 127, 1403-1409.	1.5	16
83	The Impacts of Age and Sex in a Mouse Model of Childhood Narcolepsy. Frontiers in Neuroscience, 2021, 15, 644757.	2.8	11
84	COMMENTARY on Lammers et al, Diagnosis of central disorders of hypersomnolence: Challenges in defining central disorders of hypersomnolence. Sleep Medicine Reviews, 2020, 52, 101327.	8.5	9
85	Development and Validation of the Pediatric Hypersomnolence Survey. Neurology, 2022, 98, .	1.1	7
86	Input–output connections of <scp>LJA5</scp> prodynorphin neurons. Journal of Comparative Neurology, 2021, 529, 635-654.	1.6	6
87	Circadian Rhythms and Sleep Are Dependent Upon Expression Levels of Key Ubiquitin Ligase Ube3a. Frontiers in Behavioral Neuroscience, 2022, 16, 837523.	2.0	6
88	Disrupted Sleep in Narcolepsy: Exploring the Integrity of Galanin Neurons in the Ventrolateral Preoptic Area. Sleep, 2016, 39, 1059-1062.	1.1	2
89	Major advances in sleep neurology: 2002–22. Lancet Neurology, The, 2022, 21, 678-680.	10.2	2
90	Relationship of EP1-4 prostaglandin receptors with rat hypothalamic cell groups involved in lipopolysaccharide fever responses. , 2000, 428, 20.		1

#	Article	IF	CITATIONS
91	Catching Up on REMs. New England Journal of Medicine, 2022, 386, 1950-1952.	27.0	1
92	0620 Effect Of Antidepressants On Sleep Architecture. Sleep, 2019, 42, A247-A247.	1.1	0
93	001 Exploring the Orexin-tTA/TetO-DTA Mouse as a Model for Pediatric Narcolepsy. Sleep, 2021, 44, A1-A1.	1.1	Ο
94	498 It Makes Relationships Harder: The Role of Narcolepsy in Social and Romantic Relationships in Young Adults. Sleep, 2021, 44, A196-A197.	1.1	0
95	The Serotoninergic System in Sleep and Narcolepsy. , 2011, , 73-84.		Ο
96	The Neural Basis of Sleepiness in Narcoleptic Mice. , 2011, , 163-174.		0
97	Genetic identity of warm and cool thermosensory relay neurons in the mouse parabrachial nucleus. FASEB Journal, 2015, 29, LB712.	0.5	0
98	0416 The Impact of Idiopathic Hypersomnia on Social and Romantic Relationships of Young Adults. Sleep, 2022, 45, A186-A186.	1.1	0