Wenzhe Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5856517/publications.pdf Version: 2024-02-01

WENZHELI

#	Article	IF	CITATIONS
1	Alleviation of π–π* Transition Enabling Enhanced Luminescence in Emerging TpyInCl <i>_x</i> (<i>x</i> Â= 3, 5) Perovskite Single Crystals. Advanced Optical Materials, 2022, 10, .	3.6	19
2	Enhanced Charge Transport by Regulating the Electronic Structure in 2D Tin-Based Perovskite Solar Cells. Journal of Physical Chemistry C, 2022, 126, 9425-9436.	1.5	6
3	Terpyridine-derived perovskite single crystals with tunable structures and electronic dimensionality. RSC Advances, 2021, 11, 24816-24821.	1.7	7
4	Dual-shot dynamics and ultimate frequency of all-optical magnetic recording on GdFeCo. Light: Science and Applications, 2021, 10, 8.	7.7	26
5	Multidimensional perovskites enhance solar cell performance. Journal of Semiconductors, 2021, 42, 020201.	2.0	4
6	Architecturing 1Dâ€2Dâ€3D Multidimensional Coupled CsPbI ₂ Br Perovskites toward Highly Effective and Stable Solar Cells. Small, 2021, 17, e2100888.	5.2	17
7	Electron Delocalization and Structure Coupling Promoted π-Conjugated Charge Transport in a Novel [Ga-Tpy ₂]PbI ₅ Perovskite-like Single Crystal. Journal of Physical Chemistry Letters, 2021, 12, 5571-5579.	2.1	7
8	Ambient Air Temperature Assisted Crystallization for Inorganic CsPbI2Br Perovskite Solar Cells. Molecules, 2021, 26, 3398.	1.7	6
9	π-π conjugate structure enabling the channel construction of carrier-facilitated transport in 1D–3D multidimensional CsPbI2Br solar cells with high stability. Nano Energy, 2021, 89, 106340.	8.2	20
10	Multiple Electronic Transition-Induced Anomalous Broadband Absorption in a New Class of [Ni-Tpy ₂]-Based Lead-Free Perovskite Single Crystals. Journal of Physical Chemistry C, 2021, 125, 15579-15589.	1.5	5
11	Regulation of the order–disorder phase transition in a Cs ₂ NaFeCl ₆ double perovskite towards reversible thermochromic application. Journal of Semiconductors, 2021, 42, 072202.	2.0	15
12	Chromiumâ€Based Metal–Organic Framework as Aâ€5ite Cation in CsPbI ₂ Br Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2106233.	7.8	36
13	Engineered Electronic Structure and Carrier Dynamics in Emerging Cs ₂ Ag _{<i>x</i>} Na _{1–<i>x</i>} FeCl ₆ Perovskite Single Crystals. Journal of Physical Chemistry Letters, 2020, 11, 9535-9542.	2.1	27
14	An Emerging Leadâ€Free Doubleâ€Perovskite Cs ₂ AgFeCl ₆ :In Single Crystal. Advanced Functional Materials, 2020, 30, 2002225.	7.8	48
15	Latticeâ€Matching Structurally‣table 1D@3D Perovskites toward Highly Efficient and Stable Solar Cells. Advanced Energy Materials, 2020, 10, 1903654.	10.2	50
16	Dimensionally and structurally controllable perovskite single crystals: nickel(<scp>ii</scp>)–terpyridine complex (Ni–Tpy ₂)-based perovskites. CrystEngComm, 2020, 22, 1904-1908.	1.3	7
17	An Emerging All-Inorganic CsSn _{<i>x</i>} Pb _{1–<i>x</i>} Br ₃ (0 â‰₱Tj ETQ Properties. Journal of Physical Chemistry C, 2020, 124, 13434-13446.	q1 1 0.78 1.5	4314 rgBT 16
18	Structurally Stabilizing and Environment Friendly Triggers: Doubleâ€Metallic Leadâ€Free Perovskites. Solar Rrl, 2019, 3, 1900148.	3.1	36

Wenzhe Li

#	Article	IF	CITATIONS
19	Controllable Cs <i>_x</i> FA _{1–<i>x</i>} PbI ₃ Single-Crystal Morphology via Rationally Regulating the Diffusion and Collision of Micelles toward High-Performance Photon Detectors. ACS Applied Materials & Interfaces, 2019, 11, 13812-13821.	4.0	35
20	In Situ Regulating the Order–Disorder Phase Transition in Cs ₂ AgBiBr ₆ Single Crystal toward the Application in an Xâ€Ray Detector. Advanced Functional Materials, 2019, 29, 1900234.	7.8	114
21	Structurally Reconstructed CsPbI ₂ Br Perovskite for Highly Stable and Squareâ€Centimeter Allâ€Inorganic Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1803572.	10.2	192
22	All-Inorganic CsPbI ₂ Br Perovskite Solar Cells with High Efficiency Exceeding 13%. Journal of the American Chemical Society, 2018, 140, 3825-3828.	6.6	505
23	Oxygen doping in nickel oxide for highly efficient planar perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 4721-4728.	5.2	57
24	<i>In situ</i> induced core/shell stabilized hybrid perovskites <i>via</i> gallium(<scp>iii</scp>) acetylacetonate intermediate towards highly efficient and stable solar cells. Energy and Environmental Science, 2018, 11, 286-293.	15.6	79
25	Thermodynamically Selfâ€Healing 1D–3D Hybrid Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1703421.	10.2	158
26	A brief review on the lead element substitution in perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 1054-1066.	7.1	38
27	Molecular Selfâ€Assembly Fabrication and Carrier Dynamics of Stable and Efficient CH ₃ NH ₃ Pb _(1â^'<i>x</i>) Sn _{<i>x</i>} I ₃ Perovskite Solar Cells. ChemSusChem, 2017, 10, 3839-3845.	3.6	28
28	Enhancement of thermal stability for perovskite solar cells through cesium doping. RSC Advances, 2017, 7, 17473-17479.	1.7	178
29	Enhanced efficiency and stability of inverted perovskite solar cells by interfacial engineering with alkyl bisphosphonic molecules. RSC Advances, 2017, 7, 42105-42112.	1.7	13
30	Ultra-thin MoOx as cathode buffer layer for the improvement of all-inorganic CsPbIBr2 perovskite solar cells. Nano Energy, 2017, 41, 75-83.	8.2	190
31	Crystallization Dependent Stability of Perovskite Solar Cells With Different Hole Transporting Layers. Solar Rrl, 2017, 1, 1700141.	3.1	7
32	C ₆₀ additive-assisted crystallization in CH ₃ NH ₃ Pb _{0.75} Sn _{0.25} I ₃ perovskite solar cells with high stability and efficiency. Nanoscale, 2017, 9, 13967-13975.	2.8	71
33	Enhanced charge collection and stability in planar perovskite solar cells based on a cobalt(<scp>iii</scp>)-complex additive. RSC Advances, 2017, 7, 37654-37658.	1.7	9
34	Aquointermediate Assisted Highly Orientated Perovskite Thin Films toward Thermally Stable and Efficient Solar Cells. Advanced Energy Materials, 2017, 7, 1601433.	10.2	34
35	Stable α/δ phase junction of formamidinium lead iodide perovskites for enhanced near-infrared emission. Chemical Science, 2017, 8, 800-805.	3.7	199
36	High quality perovskite thin films induced by crystal seeds with lead monoxide interfacial engineering. Journal of Materials Chemistry A, 2016, 4, 16913-16919.	5.2	8

Wenzhe Li

#	Article	IF	CITATIONS
37	Progress of interface engineering in perovskite solar cells. Science China Materials, 2016, 59, 728-742.	3.5	43
38	Addictive-assisted construction of all-inorganic CsSnIBr ₂ mesoscopic perovskite solar cells with superior thermal stability up to 473 K. Journal of Materials Chemistry A, 2016, 4, 17104-17110.	5.2	250
39	High Performance of Perovskite Solar Cells via Catalytic Treatment in Two-Step Process: The Case of Solvent Engineering. ACS Applied Materials & Interfaces, 2016, 8, 30107-30115.	4.0	28
40	Effect of cesium chloride modification on the film morphology and UV-induced stability of planar perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 11688-11695.	5.2	103
41	Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification. Energy and Environmental Science, 2016, 9, 490-498.	15.6	535
42	High performance organic-inorganic perovskite-optocoupler based on low-voltage and fast response perovskite compound photodetector. Scientific Reports, 2015, 5, 7902.	1.6	104
43	Enhanced performance in hybrid perovskite solar cell by modification with spinel lithium titanate. Journal of Materials Chemistry A, 2015, 3, 8882-8889.	5.2	19
44	Controllable Grain Morphology of Perovskite Absorber Film by Molecular Self-Assembly toward Efficient Solar Cell Exceeding 17%. Journal of the American Chemical Society, 2015, 137, 10399-10405.	6.6	347
45	Multifunctional MgO Layer in Perovskite Solar Cells. ChemPhysChem, 2015, 16, 1727-1732.	1.0	70
46	Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells. Nature Communications, 2015, 6, 10030.	5.8	620
47	Study on the stability of CH ₃ NH ₃ PbI ₃ films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. Journal of Materials Chemistry A, 2014, 2, 705-710.	5.2	963
48	Cesium carbonate as a surface modification material for organic–inorganic hybrid perovskite solar cells with enhanced performance. RSC Advances, 2014, 4, 60131-60134.	1.7	31
49	Graphene oxide as dual functional interface modifier for improving wettability and retarding recombination in hybrid perovskite solar cells. Journal of Materials Chemistry A, 2014, 2, 20105-20111.	5.2	194
50	Multifunctional perovskite capping layers in hybrid solar cells. Journal of Materials Chemistry A, 2014, 2, 14973.	5.2	57
51	Montmorillonite as bifunctional buffer layer material for hybrid perovskite solar cells with protection from corrosion and retarding recombination. Journal of Materials Chemistry A, 2014, 2, 13587-13592.	5.2	277
52	Post modification of perovskite sensitized solar cells by aluminum oxide for enhanced performance. Journal of Materials Chemistry A, 2013, 1, 11735.	5.2	96
53	Oriented mesoporous TiO2 film as photoanode for dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 8023.	5.2	4
54	Picolylamine Isomers Trigger Multidimension Coupling Strategy toward Efficient and Stable Inorganic Perovskite Solar Cells. Solar Rrl, 0, , .	3.1	2