List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5856451/publications.pdf Version: 2024-02-01

Ομιιίδος Νανγελιί

#	Article	IF	CITATIONS
1	Statistics of extremes in hydrology. Advances in Water Resources, 2002, 25, 1287-1304.	1.7	1,251
2	Bayesian Spatial Modeling of Extreme Precipitation Return Levels. Journal of the American Statistical Association, 2007, 102, 824-840.	1.8	394
3	Extreme events: dynamics, statistics and prediction. Nonlinear Processes in Geophysics, 2011, 18, 295-350.	0.6	197
4	Calibrated Ensemble Forecasts Using Quantile Regression Forests and Ensemble Model Output Statistics. Monthly Weather Review, 2016, 144, 2375-2393.	0.5	136
5	Projections of global changes in precipitation extremes from Coupled Model Intercomparison Project Phase 5 models. Geophysical Research Letters, 2013, 40, 4887-4892.	1.5	120
6	Causal Counterfactual Theory for the Attribution of Weather and Climate-Related Events. Bulletin of the American Meteorological Society, 2016, 97, 99-110.	1.7	118
7	Modelling pairwise dependence of maxima in space. Biometrika, 2009, 96, 1-17.	1.3	106
8	Fish tooth δ180 revising Late Cretaceous meridional upper ocean water temperature gradients. Geology, 2007, 35, 107.	2.0	88
9	Statistical methods for the analysis of climate extremes. Comptes Rendus - Geoscience, 2005, 337, 1013-1022.	0.4	87
10	Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection. Water Resources Research, 2016, 52, 2753-2769.	1.7	85
11	Reconstruction of past precipitation δ18O using tree-ring cellulose δ18O and δ13C: A calibration study near Lac d'Annecy, France. Earth and Planetary Science Letters, 2006, 243, 439-448.	1.8	80
12	Clustering of Maxima: Spatial Dependencies among Heavy Rainfall in France. Journal of Climate, 2013, 26, 7929-7937.	1.2	75
13	Statistical downscaling of near-surface wind over complex terrain in southern France. Meteorology and Atmospheric Physics, 2009, 103, 253-265.	0.9	70
14	A chronology of the Little Ice Age in the tropical Andes of Bolivia (16°S) and its implications for climate reconstruction. Quaternary Research, 2008, 70, 198-212.	1.0	68
15	A Bayesian hierarchical extreme value model for lichenometry. Environmetrics, 2006, 17, 555-574.	0.6	67
16	A New Spatial Skew-Normal Random Field Model. Communications in Statistics - Theory and Methods, 2007, 36, 1821-1834.	0.6	62
17	Estimation of the Continuous Ranked Probability Score with Limited Information and Applications to Ensemble Weather Forecasts. Mathematical Geosciences, 2018, 50, 209-234.	1.4	60
18	A new statistical approach to climate change detection and attribution. Climate Dynamics, 2017, 48, 367-386.	1.7	59

#	Article	IF	CITATIONS
19	Evaluating lossy data compression on climate simulation data within a large ensemble. Geoscientific Model Development, 2016, 9, 4381-4403.	1.3	56
20	Statistical analysis of tropical explosive volcanism occurrences over the last 6 centuries. Geophysical Research Letters, 2003, 30, n/a-n/a.	1.5	51
21	The pairwise beta distribution: A flexible parametric multivariate model for extremes. Journal of Multivariate Analysis, 2010, 101, 2103-2117.	0.5	50
22	Assessment study of lichenometric methods for dating surfaces. Geomorphology, 2007, 86, 131-143.	1.1	49
23	Dating of Little Ice Age glacier fluctuations in the tropical Andes: Charquini glaciers, Bolivia, 16°S. Comptes Rendus - Geoscience, 2005, 337, 1311-1322.	0.4	46
24	Evaluating the dependence structure of compound precipitation and wind speed extremes. Earth System Dynamics, 2021, 12, 1-16.	2.7	46
25	Analyses of the Northern European Summer Heatwave of 2018. Bulletin of the American Meteorological Society, 2020, 101, S35-S40.	1.7	44
26	Multi-resolution time series analysis applied to solar irradiance and climate reconstructions. Journal of Atmospheric and Solar-Terrestrial Physics, 2003, 65, 191-201.	0.6	41
27	A Comparison of Moderate and Extreme ERAâ€5 Daily Precipitation With Two Observational Data Sets. Earth and Space Science, 2021, 8, e2020EA001633.	1.1	39
28	Statistical analysis of floods in Bohemia (Czech Republic) since 1825. Hydrological Sciences Journal, 2006, 51, 930-945.	1.2	36
29	Statistical Methods for Extreme Event Attribution in Climate Science. Annual Review of Statistics and Its Application, 2020, 7, 89-110.	4.1	36
30	A skewed Kalman filter. Journal of Multivariate Analysis, 2005, 94, 382-400.	0.5	35
31	Forest-Based and Semiparametric Methods for the Postprocessing of Rainfall Ensemble Forecasting. Weather and Forecasting, 2019, 34, 617-634.	0.5	35
32	Truncated skew-normal distributions: moments, estimation by weighted moments and application to climatic data. Metron, 2010, 68, 331-345.	0.6	32
33	A statistical framework for conditional extreme event attribution. Advances in Statistical Climatology, Meteorology and Oceanography, 2017, 3, 17-31.	0.6	32
34	Optimal fingerprinting under multiple sources of uncertainty. Geophysical Research Letters, 2014, 41, 1261-1268.	1.5	30
35	Spatial clustering of summer temperature maxima from the CNRM-CM5 climate model ensembles & E-OBS over Europe. Weather and Climate Extremes, 2015, 9, 17-24.	1.6	30
36	Multivariate stochastic bias corrections with optimal transport. Hydrology and Earth System Sciences, 2019, 23, 773-786.	1.9	29

#	Article	IF	CITATIONS
37	Bayesian Dirichlet mixture model for multivariate extremes: A re-parametrization. Computational Statistics and Data Analysis, 2014, 71, 542-567.	0.7	28
38	Modeling Uncertainties in Lichenometry Studies. Arctic, Antarctic, and Alpine Research, 2007, 39, 277-285.	0.4	24
39	Detecting changes in forced climate attractors with Wasserstein distance. Nonlinear Processes in Geophysics, 2017, 24, 393-405.	0.6	24
40	On the evaluation of climate model simulated precipitation extremes. Environmental Research Letters, 2015, 10, 014012.	2.2	23
41	Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework. Journal of Multivariate Analysis, 2014, 131, 149-162.	0.5	21
42	Trends of atmospheric circulation during singular hot days in Europe. Environmental Research Letters, 2018, 13, 054007.	2.2	21
43	Probabilities of Causation of Climate Changes. Journal of Climate, 2018, 31, 5507-5524.	1.2	21
44	An Improved Bayesian Information Criterion forÂMultiple Change-Point Models. Technometrics, 2012, 54, 256-268.	1.3	20
45	Inferring change points and nonlinear trends in multivariate time series: Application to West African monsoon onset timings estimation. Journal of Geophysical Research, 2011, 116, .	3.3	17
46	Combining random forests and class-balancing to discriminate between three classes of avalanche activity in the French Alps. Cold Regions Science and Technology, 2021, 187, 103276.	1.6	17
47	Disconcerting learning on climate sensitivity and the uncertain future of uncertainty. Climatic Change, 2013, 119, 585-601.	1.7	16
48	Approximating the conditional density given large observed values via a multivariate extremes framework, with application to environmental data. Annals of Applied Statistics, 2012, 6, .	0.5	15
49	Bayesian model averaging for multivariate extremes. Extremes, 2013, 16, 325-350.	0.5	14
50	A Non-Parametric Entropy-Based Approach to Detect Changes in Climate Extremes. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2014, 76, 861-884.	1.1	14
51	Probability weighted moments properties for small samples. Statistics and Probability Letters, 2007, 77, 190-195.	0.4	13
52	Revising Return Periods for Record Events in a Climate Event Attribution Context. Journal of Climate, 2018, 31, 3411-3422.	1.2	13
53	Climate extreme event attribution using multivariate peaks-over-thresholds modeling and counterfactual theory. Annals of Applied Statistics, 2020, 14, .	0.5	13
54	A note of caution when interpreting parameters of the distribution of excesses. Advances in Water Resources, 2011, 34, 1215-1221.	1.7	12

#	Article	IF	CITATIONS
55	An automatic statistical methodology to extract pulse-like forcing factors in climatic time series: Application to volcanic events. Geophysical Monograph Series, 2003, , 177-186.	0.1	10
56	An automatized homogenization procedure via pairwise comparisons with application to Argentinean temperature series. International Journal of Climatology, 2014, 34, 3528-3545.	1.5	9
57	A limiting distribution for maxima of discrete stationary triangular arrays with an application to risk due to avalanches. Extremes, 2016, 19, 25-40.	0.5	9
58	An extension of max autoregressive models. Statistics and Its Interface, 2011, 4, 253-266.	0.2	8
59	Comparison between the Chernoff and Factorial Moment Bounds for Discrete Random Variables. American Statistician, 1997, 51, 40-41.	0.9	7
60	Non-linear models for extremal dependence. Journal of Multivariate Analysis, 2017, 159, 49-66.	0.5	7
61	A semiâ€parametric stochastic generator for bivariate extreme events. Stat, 2017, 6, 184-201.	0.3	7
62	Detecting distributional changes in samples of independent block maxima using probability weighted moments. Extremes, 2017, 20, 417-450.	0.5	7
63	Autoregressive models for maxima and their applications to CH ₄ and N ₂ O. Environmetrics, 2010, 21, 189-207.	0.6	6
64	Particle filtering for Gumbelâ€distributed daily maxima of methane and nitrous oxide. Environmetrics, 2013, 24, 51-62.	0.6	6
65	Skew generalized extreme value distribution: Probability-weighted moments estimation and application to block maxima procedure. Communications in Statistics - Theory and Methods, 2016, 45, 5037-5052.	0.6	6
66	Forecast score distributions with imperfect observations. Advances in Statistical Climatology, Meteorology and Oceanography, 2021, 7, 53-71.	0.6	6
67	Editorial: special issue on statistics of extremes in weather and climate. Extremes, 2010, 13, 107-108.	0.5	5
68	A response to bradwell's commentary on recent statistical studies in lichenometry. Geografiska Annaler, Series A: Physical Geography, 2010, 92, 485-487.	0.6	5
69	Variability patterns of the annual frequency and timing of low streamflow days across the United States and their linkage to regional and largeâ€scale climate. Hydrological Processes, 2019, 33, 1569-1578.	1.1	5
70	Extreme avalanche cycles: Return levels and probability distributions depending on snow and meteorological conditions. Weather and Climate Extremes, 2021, 33, 100344.	1.6	4
71	Improved Regional Frequency Analysis of rainfall data. Weather and Climate Extremes, 2022, 36, 100456.	1.6	4
72	Polynomial Wavelet Regression for Images With Irregular Boundaries. IEEE Transactions on Image Processing, 2004, 13, 773-781.	6.0	3

#	ARTICLE	IF	CITATIONS
73	Multimodel Combination by a Bayesian Hierarchical Model: Assessment of Ice Accumulation over the Oceanic Arctic Region. Journal of Climate, 2010, 23, 5421-5436.	1.2	3
74	Extracting common pulse-like signals from multiple ice core time series. Computational Statistics and Data Analysis, 2013, 58, 45-57.	0.7	3
75	A frailty-contagion model for multi-site hourly precipitation driven by atmospheric covariates. Advances in Water Resources, 2015, 78, 145-154.	1.7	3
76	Almost sure relative stability of the maximum of a stationary sequence. Advances in Applied Probability, 2003, 35, 721-736.	0.4	2
77	Improving extreme quantile estimation via a folding procedure. Journal of Statistical Planning and Inference, 2010, 140, 1775-1787.	0.4	2
78	A folding methodology for multivariate extremes: estimation of the spectral probability measure and actuarial applications. Scandinavian Actuarial Journal, 2015, 2015, 549-572.	1.0	2
79	Attribution of Extreme Wave Height Records along the North Atlantic Coasts using Hindcast Data: Feasibility and Limitations. Journal of Coastal Research, 2020, 95, 1268.	0.1	2
80	Extracting a Common Signal in Tree Ring Widths with a Semi-parametric Bayesian Hierarchical Model. Journal of Agricultural, Biological, and Environmental Statistics, 2018, 23, 550-565.	0.7	1
81	Editorial to the special issue: Statistical modeling of environmental extremes. Extremes, 2021, 24, 197-198.	0.5	1
82	Non Linear Models for Extremal Dependence. SSRN Electronic Journal, 0, , .	0.4	1
83	Identifying local smoothness for spatially inhomogeneous functions. Computational Statistics, 2017, 32, 1115-1138.	0.8	0
84	Multi-model errors and emergence times in climate attribution studies. Journal of Climate, 2022, , 1-42.	1.2	0