Jose Miguel Martin-Martinez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5856002/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Addition of small amounts of graphene oxide in the polyol during the synthesis of waterborne polyurethane urea adhesives for improving their adhesion properties. International Journal of Adhesion and Adhesives, 2021, 104, 102725.	1.4	21
2	Bonding in the shoe industry. , 2021, , 667-717.		1
3	Influence of the Surface Chemistry of Graphene Oxide on the Structure–Property Relationship of Waterborne Poly(urethane urea) Adhesive. Materials, 2021, 14, 4377.	1.3	3
4	Structure and adhesion properties of waterborne poly(urethane urea)s containing small amounts of different graphene derivatives. Journal of Adhesion Science and Technology, 2021, 35, 2758-2789.	1.4	4
5	Structural and Viscoelastic Properties of Thermoplastic Polyurethanes Containing Mixed Soft Segments with Potential Application as Pressure Sensitive Adhesives. Polymers, 2021, 13, 3097.	2.0	9
6	The impact of COVID-19 on adhesion science. Journal of Adhesion Science and Technology, 2021, 35, 1-2.	1.4	5
7	Study of waterborne polyurethane materials under aging treatments. Effect of the soft segment length. Progress in Organic Coatings, 2020, 138, 105357.	1.9	14
8	Addition of Graphene Oxide in Different Stages of the Synthesis of Waterborne Polyurethane-Urea Adhesives and Its Influence on Their Structure, Thermal, Viscoelastic and Adhesion Properties. Materials, 2020, 13, 2899.	1.3	11
9	Structure–Properties Relationship in Waterborne Poly(Urethane-Urea)s Synthesized with Dimethylolpropionic Acid (DMPA) Internal Emulsifier Added before, during and after Prepolymer Formation. Polymers, 2020, 12, 2478.	2.0	3
10	Influence of the hard segments content on the structure, viscoelastic and adhesion properties of thermoplastic polyurethane pressure sensitive adhesives. Journal of Adhesion Science and Technology, 2020, 34, 2652-2671.	1.4	9
11	Viscoelastic and Adhesion Properties of New Poly(Ether-Urethane) Pressure-Sensitive Adhesives. Frontiers in Mechanical Engineering, 2020, 6, .	0.8	7
12	New Waterborne Polyurethane-Urea Synthesized with Ether-Carbonate Copolymer and Amino-Alcohol Chain Extenders with Tailored Pressure-Sensitive Adhesion Properties. Materials, 2020, 13, 627.	1.3	12
13	Balanced Viscoelastic Properties of Pressure Sensitive Adhesives Made with Thermoplastic Polyurethanes Blends. Polymers, 2019, 11, 1608.	2.0	14
14	Structural and adhesion properties of poly(ethyl 2-cyanoacrylate) post-cured at different temperatures and times. Journal of Adhesion Science and Technology, 2019, 33, 329-345.	1.4	4
15	Different compatibility approaches to improve the thermal and mechanical properties of EVA/starch composites. Polymer Composites, 2019, 40, 3242-3253.	2.3	8
16	Thermoplastic polyurethane pressure sensitive adhesives made with mixtures of polypropylene glycols of different molecular weights. International Journal of Adhesion and Adhesives, 2019, 88, 81-90.	1.4	30
17	Viscoelastic and adhesion properties of hot-melts made with blends of ethylene-co-n-butyl acrylate (EBA) and ethylene-co-vinyl acetate (EVA) copolymers. International Journal of Adhesion and Adhesives, 2019, 88, 34-42.	1.4	15
18	Thermoplastic polyurethane coatings made with mixtures of polyethers of different molecular weights with pressure sensitive adhesion property. Progress in Organic Coatings, 2018, 118, 148-156.	1.9	39

#	Article	IF	CITATIONS
19	Thermal, mechanical, and viscoelastic properties of recycled poly(ethylene terephthalate) fiberâ€reinforced unsaturated polyester composites. Polymer Composites, 2018, 39, 1682-1693.	2.3	15
20	Effect of adding different amounts of graphite nanoplatelets on structural, thermal, mechanical and viscoelastic properties of vinylester based composites cured at 25°C. Polymer Composites, 2018, 39, E1381.	2.3	3
21	Surface modification and adhesion of wood-plastic composite (WPC) treated with UV/ozone. Composite Interfaces, 2018, 25, 127-149.	1.3	16
22	Prof. Mutlu Özcan, Associate Editor of JAST, is the recipient of the prestigious 2018 IADR Distinguished Scientist Wilmer Souder Award. Journal of Adhesion Science and Technology, 2018, 32, 2419-2420.	1.4	0
23	New Binary Blends of Ethylene-co-n-butyl Acrylate (EBA) Copolymer and Low Molecular Weight Rosin Ester Resin with Potential as Pressure Sensitive Adhesives. Materials, 2018, 11, 2037.	1.3	11
24	Comparative surface and adhesion properties of mechanical abrasion, flame and radiation-based surface treated wood plastic composites made with different polymers. Surface Topography: Metrology and Properties, 2018, 6, 034020.	0.9	1
25	Characterization of the chemical structure of vinyl ester resin in a climate chamber under different conditions of degradation. Polymer Degradation and Stability, 2018, 153, 88-99.	2.7	19
26	Comparative Adhesion, Ageing Resistance, and Surface Properties of Wood Plastic Composite Treated with Low Pressure Plasma and Atmospheric Pressure Plasma Jet. Polymers, 2018, 10, 643.	2.0	26
27	Improved Surface and Adhesion Properties of Wood-Polyethylene Composite by Treatment with Argon–Oxygen Low Pressure Plasma. Plasma Chemistry and Plasma Processing, 2018, 38, 871-886.	1.1	9
28	Structure and adhesion properties before and after hydrolytic ageing of polyurethane urea adhesives made with mixtures of waterborne polyurethane dispersions. International Journal of Adhesion and Adhesives, 2018, 85, 165-176.	1.4	25
29	Shoe Industry. , 2018, , 1483-1532.		2
30	Adhesion in numerous disciplines. Journal of Adhesion Science and Technology, 2017, 31, 465-465.	1.4	0
31	Reactivity of novel ethyl cyanoacrylate and 6-hydroxyhexyl acrylate adhesive mixtures and their influence on adhesion and thermal stability. European Polymer Journal, 2017, 88, 75-92.	2.6	6
32	Surface modification and improved adhesion of wood-plastic composites (WPCs) made with different polymers by treatment with atmospheric pressure rotating plasma jet. International Journal of Adhesion and Adhesives, 2017, 77, 204-213.	1.4	32
33	Structural characterization of polyurethane ureas and waterborne polyurethane urea dispersions made with mixtures of polyester polyol and polycarbonate diol. Progress in Organic Coatings, 2017, 112, 141-152.	1.9	52
34	Assessment of the compatibility in hot melts by using different thermoanalytical methods. Ethylene/n-butyl acrylate (EBA) hot melts containing tackifiers of different nature. Journal of Thermal Analysis and Calorimetry, 2017, 129, 1495-1503.	2.0	9
35	Shoe Industry. , 2017, , 1-50.		1
36	Surface Treatment of Polydimethylsiloxane (PDMS) with Atmospheric Pressure Rotating Plasma Jet. Modeling and Optimization of the Surface Treatment Conditions. Plasma Processes and Polymers, 2016, 13, 459-469.	1.6	30

#	Article	IF	CITATIONS
37	Increased adhesion of polydimethylsiloxane (PDMS) to acrylic adhesive tape for medical use by surface treatment with an atmospheric pressure rotating plasma jet. Journal Physics D: Applied Physics, 2016, 49, 334001.	1.3	14
38	Changes in compatibility, tack and viscoelastic properties of ethylene n-butyl acrylate (EBA) copolymer–pentaerythritol rosin ester blend by adding microcrystalline wax, Fischer–Tropsch wax and mixture of waxes. International Journal of Adhesion and Adhesives, 2016, 65, 47-53.	1.4	13
39	JAST: 30Âyears of service to the scientific community. Journal of Adhesion Science and Technology, 2016, 30, 1-1.	1.4	25
40	Improvement of adhesion and paint ability of EVA copolymers with different vinyl acetate contents by treatment with UV-ozone. International Journal of Adhesion and Adhesives, 2015, 58, 34-43.	1.4	9
41	Influence of post-curing temperature on the structure, properties, and adhesion of vinyl ester adhesive. Journal of Adhesion Science and Technology, 2015, 29, 518-531.	1.4	11
42	Thermal, viscoelastic and adhesion properties of EVA (ethylene-co-vinyl acetate) hot melts containing polypropylene waxes of different nature. Journal of Adhesion Science and Technology, 2015, 29, 875-889.	1.4	6
43	Use of statistical design of experiments in the optimization of Ar–O2 low-pressure plasma treatment conditions of polydimethylsiloxane (PDMS) for increasing polarity and adhesion, and inhibiting hydrophobic recovery. Applied Surface Science, 2015, 332, 1-11.	3.1	19
44	Role of the interactions between carbonate groups on the phase separation and properties of waterborne polyurethane dispersions prepared with copolymers of polycarbonate diol. Progress in Organic Coatings, 2015, 88, 199-211.	1.9	28
45	Treatment with Ar–O ₂ low-pressure plasma of vulcanized rubber sole containing noticeable amount of processing oils for improving adhesion to upper in shoe industry. Journal of Adhesion Science and Technology, 2015, 29, 1301-1314.	1.4	14
46	Effect of the carbon black content on the thermal, rheological and mechanical properties of thermoplastic polyurethanes. Journal of Adhesion Science and Technology, 2015, 29, 1136-1154.	1.4	12
47	Use of cyanoacrylate adhesives in dermal lesions: a review. Journal of Adhesion Science and Technology, 2014, 28, 573-597.	1.4	9
48	Flow Microâ€ <scp>C</scp> alorimetry and <scp>FTIR</scp> Spectroscopy Study of Interfacial Interactions in Uncoated and Coated Calcium Carbonate Filled Polyurethane Adhesives. Macromolecular Symposia, 2014, 338, 72-80.	0.4	3
49	New Silica Fillers for Polymers used in Food Packaging. Macromolecular Symposia, 2014, 338, 81-89.	0.4	1
50	Surface treatment with UV-ozone to improve adhesion of vulcanized rubber formulated with an excess of processing oil. International Journal of Adhesion and Adhesives, 2014, 55, 106-113.	1.4	27
51	Assessment of the surface chemistry of carbon blacks by TGA-MS, XPS and inverse gas chromatography using statistical chemometric analysis. Applied Surface Science, 2014, 316, 315-323.	3.1	85
52	Flow micro-calorimetry and diffuse reflectance Fourier transform infrared spectroscopy studies in filled polyurethane adhesives by using dimethyl adipate as a model compound. International Journal of Adhesion and Adhesives, 2014, 48, 43-50.	1.4	3
53	Incidence of the polyol nature in waterborne polyurethane dispersions on their performance as coatings on stainless steel. Progress in Organic Coatings, 2013, 76, 1726-1729.	1.9	49
54	Coatings prepared from waterborne polyurethane dispersions obtained with polycarbonates of 1,6-hexanediol of different molecular weights. Progress in Organic Coatings, 2013, 76, 1484-1493.	1.9	74

#	Article	IF	CITATIONS
55	Estimation of polyurethane-carbon black interactions by means of inverse gas chromatography. Journal of Chromatography A, 2013, 1314, 249-254.	1.8	11
56	Selective surface modification of ethylene-vinyl acetate and ethylene polymer blend by UV–ozone treatment. International Journal of Adhesion and Adhesives, 2013, 43, 42-53.	1.4	19
57	Synthesis and characterization of polyurethane sealants containing rosin intended for sealing defect in annulus for disc regeneration. International Journal of Adhesion and Adhesives, 2013, 42, 11-20.	1.4	30
58	<i>JAST</i> : bonding tradition with innovation. Journal of Adhesion Science and Technology, 2013, 27, 1-2.	1.4	12
59	New Polyurethane Sealants Containing Rosin for Non-Invasive Disc Regeneration Surgery. Key Engineering Materials, 2013, 583, 67-79.	0.4	2
60	Migration of Paraffin Wax to Sulfur Vulcanized Styrene–Butadiene Rubber (SBR) Surface: Effect of Temperature. Journal of Adhesion Science and Technology, 2012, 26, 813-826.	1.4	9
61	Use of new silica fillers as additives for polymers used in packaging of fruit. Quimica Nova, 2012, 35, 1907-1911.	0.3	8
62	Comparative Properties of Thermoplastic Polyurethane Adhesive Filled with Natural or Precipitated Calcium Carbonate. Macromolecular Symposia, 2011, 301, 63-72.	0.4	10
63	Synthesis and Characterization of New Silicaâ€Titania Mixed Oxides Obtained by Solâ€Gel Technique. Macromolecular Symposia, 2011, 301, 136-145.	0.4	8
64	Waterborne polyurethane dispersions obtained with polycarbonate of hexanediol intended for use as coatings. Progress in Organic Coatings, 2011, 71, 136-146.	1.9	107
65	Influence of the solids content on the properties of waterborne polyurethane dispersions obtained with polycarbonate of hexanediol. International Journal of Adhesion and Adhesives, 2011, 31, 787-794.	1.4	67
66	Addition of precipitated calcium carbonate filler to thermoplastic polyurethane adhesives. International Journal of Adhesion and Adhesives, 2011, 31, 795-804.	1.4	37
67	Influence of the Configuration of the Plasma Chamber on the Surface Modification of Synthetic Vulcanized Rubber Treated with Lowâ€pressure Oxygen RF Plasma. Plasma Processes and Polymers, 2011, 8, 1080-1092.	1.6	9
68	Effect of temperature on the extent of migration of low molecular weight moieties to rubber surface. International Journal of Adhesion and Adhesives, 2011, 31, 20-28.	1.4	20
69	Addition of unmodified nanoclay to improve the performance of unsaturated polyester resin coating on natural stone. International Journal of Adhesion and Adhesives, 2011, 31, 154-163.	1.4	23
70	Migration of low molecular weight moiety at rubber–polyurethane interface: An ATR-IR spectroscopy study. International Journal of Adhesion and Adhesives, 2011, 31, 389-397.	1.4	14
71	Affect of polydispersity on the properties of waterborne polyurethane dispersions based on polycarbonate polyol. International Journal of Adhesion and Adhesives, 2010, 30, 456-465.	1.4	80
72	Surface modification of vulcanized styrene–butadiene rubber with trichloroisocyanuric acid solutions of different active chlorine contents. International Journal of Adhesion and Adhesives, 2010, 30, 550-558.	1.4	10

#	Article	IF	CITATIONS
73	Comparative Study of the Effect of Addition of Silica and Silicate Nanofillers on the Properties of Epoxy Coatings. Composite Interfaces, 2010, 17, 513-532.	1.3	6
74	Synthesis and Characterization of New Organic–Inorganic Hybrid Nanosilica Fillers Prepared by Sol–Gel Reaction. Composite Interfaces, 2010, 17, 467-479.	1.3	1
75	Influence of the Chemical Structure of Urethane-Based Thickeners on the Properties of Waterborne Polyurethane Adhesives. Journal of Adhesion, 2009, 85, 665-689.	1.8	17
76	Addition of different amounts of a urethane-based thickener to waterborne polyurethane adhesive. International Journal of Adhesion and Adhesives, 2009, 29, 309-318.	1.4	42
77	Effect of annealing on the properties of waterborne polyurethane adhesive containing urethane-based thickener. International Journal of Adhesion and Adhesives, 2009, 29, 774-780.	1.4	10
78	Surface modifications of polycarbonate (PC) and acrylonitrile butadiene styrene (ABS) copolymer by treatment with atmospheric plasma. Surface and Coatings Technology, 2009, 203, 2173-2180.	2.2	108
79	Addition of Urethane-Based Thickener to Waterborne Polyurethane Adhesives Having Different NCO/OH Ratios and Ionic Groups Contents. Journal of Adhesion Science and Technology, 2009, 23, 1953-1972.	1.4	7
80	Influence of the storage of reactive urethane quasi-prepolymers in their composition and adhesion properties. International Journal of Adhesion and Adhesives, 2008, 28, 29-37.	1.4	14
81	Interactions at the interface between thermoplastic rubber and polychloroprene adhesive. Surface and Interface Analysis, 2008, 40, 107-120.	0.8	7
82	Moisture curing kinetics of isocyanate ended urethane quasiâ€prepolymers monitored by IR spectroscopy and DSC. Journal of Applied Polymer Science, 2008, 107, 700-709.	1.3	49
83	Improvement in mechanical and structural integrity of natural stone by applying unsaturated polyester resin-nanosilica hybrid thin coating. European Polymer Journal, 2008, 44, 3146-3155.	2.6	37
84	Durability of corona discharge and low-pressure air plasma-treated ethylene–vinyl acetate copolymers (EVAs). International Journal of Adhesion and Adhesives, 2008, 28, 38-46.	1.4	8
85	UV-Ozone Surface Treatment of SBS Rubbers Containing Fillers: Influence of the Filler Nature on the Extent of Surface Modification and Adhesion. Journal of Adhesion Science and Technology, 2008, 22, 147-168.	1.4	8
86	Improving Adhesion of Rubber. , 2008, , .		0
87	Corona discharge treatment of EVAs with different vinyl acetate contents. Journal of Adhesion Science and Technology, 2007, 21, 441-463.	1.4	11
88	Influence of the hard-to-soft segment ratio on the adhesion of water-borne polyurethane adhesive. Journal of Adhesion Science and Technology, 2007, 21, 755-773.	1.4	45
89	Evidences of phase separation in moistureâ€cured poly(urethane urea)s by means of temperature modulated differential scanning calorimetry. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 3034-3045	2.4	11
90	Properties of thermoplastic polyurethane adhesives containing nanosilicas with different specific surface area and silanol content. International Journal of Adhesion and Adhesives, 2007, 27, 469-479.	1.4	59

#	Article	IF	CITATIONS
91	Surface modifications and adhesion of SBS rubber containing calcium carbonate filler by treatment with UV radiation. International Journal of Adhesion and Adhesives, 2007, 27, 434-445.	1.4	19
92	Structure and properties of waterborne polyurethane adhesives obtained by different methods. Journal of Adhesion Science and Technology, 2006, 20, 519-536.	1.4	26
93	Influence of the Curing Temperature in the Mechanical and Thermal Properties of Nanosilica Filled Epoxy Resin Coating. Macromolecular Symposia, 2006, 233, 137-146.	0.4	12
94	Surface modifications of vulcanized SBR rubber by treatment with atmospheric pressure plasma torch. International Journal of Adhesion and Adhesives, 2006, 26, 345-354.	1.4	40
95	Influence of the free isocyanate content in the adhesive properties of reactive trifunctional polyether urethane quasi-prepolymers. International Journal of Adhesion and Adhesives, 2006, 26, 355-362.	1.4	41
96	Addition of nanosilicas with different silanol content to thermoplastic polyurethane adhesives. International Journal of Adhesion and Adhesives, 2006, 26, 378-387.	1.4	64
97	Influence of Additives in Adhesion of UV Radiation Surface-Treated SBS Rubber. Journal of Adhesion, 2006, 82, 753-778.	1.8	2
98	Changes in cohesion and adhesion of tanned leather as a function of reaction time with urethane-based primer. Journal of Adhesion Science and Technology, 2006, 20, 1091-1107.	1.4	0
99	Improved Adhesion of UV Treated EVA Copolymer by Adding Small Amounts of Fillers. Macromolecular Symposia, 2005, 221, 43-52.	0.4	2
100	Different Performance of Ar, O2 and CO2 RF Plasmas in the Adhesion of Thermoplastic Rubber to Polyurethane Adhesive. , 2005, , 177-192.		10
101	Influence of the Particle Size of CaCO3on the Adhesion of Filled EVA Materials. Macromolecular Symposia, 2005, 221, 23-32.	0.4	1
102	Interactions in Nanosilica-Polyurethane Composites Evidenced by Plate-Plate Rheology and DMTA. Macromolecular Symposia, 2005, 221, 1-10.	0.4	22
103	Environmental friendly surface treatments of styrene–butadiene–styrene rubber: alternatives to the solvent-based halogenation treatment. International Journal of Adhesion and Adhesives, 2005, 25, 19-29.	1.4	26
104	Surface modification of EVA copolymer by UV treatment. International Journal of Adhesion and Adhesives, 2005, 25, 139-145.	1.4	33
105	Adhesion of surface-treated EVA to polychloroprene adhesive containing different polyisocyanate content. International Journal of Adhesion and Adhesives, 2005, 25, 201-209.	1.4	6
106	Addition of ozone in the UV radiation treatment of a synthetic styrene-butadiene-styrene (SBS) rubber. International Journal of Adhesion and Adhesives, 2005, 25, 358-370.	1.4	60
107	Characterization of waterborne polyurethane adhesives containing different amounts of ionic groups. International Journal of Adhesion and Adhesives, 2005, 25, 507-517.	1.4	166
108	Application of one-component primer to avoid the roughening of leather and increase its adhesion to polyurethane adhesive. International Journal of Adhesion and Adhesives, 2005, 25, 320-328.	1.4	23

#	Article	IF	CITATIONS
109	Influence of calcium carbonate added to the SBS rubber formulation on the surface modifications produced by halogenation. Journal of Adhesion Science and Technology, 2005, 19, 1237-1247.	1.4	6
110	Water-based chlorination treatment of SBS rubber soles to improve their adhesion to waterborne polyurethane adhesives in the footwear industry. Journal of Adhesion Science and Technology, 2005, 19, 947-974.	1.4	7
111	Ultrasonic cleaning of SBR rubber to improve the performance of subsequent plasma torch treatment. Journal of Adhesion Science and Technology, 2005, 19, 927-946.	1.4	4
112	Surface treatment of vulcanized latex soles to improve their adhesion performance in shoe manufacturing. Journal of Adhesion Science and Technology, 2005, 19, 19-40.	1.4	1
113	Improved adhesion of EVAs with different vinyl acetate contents treated with sulphuric acid. Journal of Adhesion Science and Technology, 2004, 18, 967-982.	1.4	15
114	SURFACE MODIFICATIONS AND ADHESION OF VULCANIZED SBR RUBBER TREATED WITH RF PLASMAS OF DIFFERENT GASES. Journal of Adhesion, 2004, 80, 613-634.	1.8	27
115	Chemical modification of styrene–butadiene–styrene co-polymer by grafting of N-carbamyl maleamic acid. Journal of Adhesion Science and Technology, 2004, 18, 1849-1860.	1.4	10
116	Surface modifications on eva treated with sulphuric acid. Journal of Adhesion, 2003, 79, 525-547.	1.8	13
117	Characterization of eva-based adhesives containing different amounts of rosin ester or polyterpene tackifier. Journal of Adhesion, 2003, 79, 805-824.	1.8	20
118	Treatment of vulcanized styrene-butadiene rubber (SBR) with mixtures of Trichloroisocyanuric Acid and Fumaric Acid. Journal of Adhesion, 2003, 79, 1111-1133.	1.8	10
119	Synthesis and characterization of a new acrylic adhesive mixture for use in ocular strabismus surgery. Journal of Adhesion, 2003, 79, 1067-1089.	1.8	6
120	Treatment of EVA with corona discharge to improve its adhesion to polychloroprene adhesive. Journal of Adhesion Science and Technology, 2003, 17, 47-65.	1.4	29
121	UV treatment of synthetic styrene-butadiene-styrene rubber. Journal of Adhesion Science and Technology, 2003, 17, 25-45.	1.4	32
122	Improved adhesion of low-density polyethylene/EVA foams using different surface treatments. Journal of Adhesion Science and Technology, 2002, 16, 1073-1101.	1.4	27
123	Different surface modifications produced by oxygen plasma and halogenation treatments on a vulcanized rubber. Journal of Adhesion Science and Technology, 2002, 16, 409-428.	1.4	18
124	Improved peel strength in vulcanized sbr rubber roughened before chlorination with trichloroisocyanuric acid. Journal of Adhesion, 2002, 78, 15-38.	1.8	27
125	Influence of Chlorinating Solution Concentration on the Interactions Produced Between Chlorinated Thermoplastic Rubber and Polyurethane Adhesive at the Interface. Journal of Adhesion, 2002, 78, 39-77.	1.8	12
126	Properties of polyurethane adhesives containing natural calcium carbonate + fumed silica mixtures. Journal of Adhesion Science and Technology, 2001, 15, 187-203.	1.4	18

#	Article	IF	CITATIONS
127	Use of calcium carbonate - fumed silica mixtures as filler in polyurethane adhesives. Macromolecular Symposia, 2001, 169, 185-190.	0.4	4
128	Rheological properties of polyurethane adhesives containing silica as filler: influence of the nature and surface chemistry of silica. Macromolecular Symposia, 2001, 169, 191-196.	0.4	15
129	Title is missing!. Plasmas and Polymers, 2001, 6, 81-105.	1.5	42
130	Influence of the vinyl acetate content and the tackifier nature on the rheological, thermal, and adhesion properties of EVA adhesives. Journal of Adhesion Science and Technology, 2001, 15, 243-263.	1.4	11
131	Weak boundary layers on vulcanized styrene–butadiene rubber treated with sulfuric acid. Journal of Adhesion Science and Technology, 2001, 15, 1323-1350.	1.4	9
132	Surface Characterization of Vulcanized Rubber Treated with Sulfuric Acid and its Adhesion to Polyurethane Adhesive. Journal of Adhesion, 2000, 73, 135-160.	1.8	45
133	Chlorination of vulcanized styrene-butadiene rubber using solutions of trichloroisocyanuric acid in different solvents. Journal of Adhesion Science and Technology, 2000, 14, 561-581.	1.4	31
134	Thermoplastic polyurethane-fumed silica composites: influence of the specific surface area of fumed silica on the viscoelastic and adhesion properties. Journal of Adhesion Science and Technology, 1999, 13, 695-711.	1.4	29
135	Chlorination of SBS rubbers with different styrene contents using trichloro-isocyanuric acid. Journal of Adhesion Science and Technology, 1999, 13, 903-930.	1.4	20
136	Surface characterization of synthetic vulcanized rubber treated with oxygen plasma. Surface and Interface Analysis, 1998, 26, 385-399.	0.8	46
137	Characterization of Thermoplastic Polyurethanes Prepared Using Different Macroglycols. Journal of Adhesion, 1998, 68, 143-161.	1.8	10
138	Properties of Polyurethane Elastomers with Different Hard/Soft Segment Ratio. Journal of Adhesion, 1998, 67, 327-345.	1.8	37
139	Attapulgite as a filler for solvent-based polyurethane adhesives. Journal of Adhesion Science and Technology, 1998, 12, 479-495.	1.4	21
140	Surface characterization of synthetic vulcanized rubber treated with oxygen plasma. , 1998, 26, 385.		1
141	Influence of the length of the chain extender on the properties of thermoplastic polyurethanes. Journal of Adhesion Science and Technology, 1997, 11, 1077-1087.	1.4	27
142	Surface Analysis of Debonded Chlorinated Vulcanized Styrene-Butadiene Rubber Joints. Journal of Adhesion, 1997, 62, 23-43.	1.8	4
143	Characterization of solvent-based polyurethane adhesives containing sepiolite as a filler. Rheological, mechanical, surface, and adhesion properties. Journal of Adhesion Science and Technology, 1997, 11, 247-262.	1.4	18
144	Influence of the nature and formulation of sty rene-butadiene rubber on the effects produced by surface treatment with trichloroisocyanuric acid. Journal of Adhesion Science and Technology, 1997, 11, 447-470.	1.4	23

#	Article	IF	CITATIONS
145	Adhesion of Rubber Materials: Surface Modification versus Formulation. Advanced Materials Research, 0, 324, 20-25.	0.3	2
146	Special section in honor of Professor Jean-Pierre Pascault: half a century of polymer chemistry and polymer materials research. Journal of Adhesion Science and Technology, 0, , 1-2.	1.4	0
147	Structural, thermo-mechanical and morphological properties of composites made with poly(lactic) Tj ETQq1 1 0. Technology, 0, , 1-23.	784314 rg 1.4	BT /Overlock 0