Jadwiga Laska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5855872/publications.pdf

Version: 2024-02-01

471061 329751 1,362 44 17 37 citations h-index g-index papers 45 45 45 1565 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fabrication of Polyurethane/Polylactide (PU/PLDL) Nanofibers Using Electrospinning Method. Materials, 2021, 14, 2459.	1.3	1
2	Design and Construction of a Chamber Enabling the Observation of Living Cells in the Field of a Constant Magnetic Force. Cells, 2021, 10, 3339.	1.8	1
3	Microstructure and Mechanical Properties of PU/PLDL Sponges Intended for Grafting Injured Spinal Cord. Polymers, 2020, 12, 2693.	2.0	1
4	Processing of poly-l-lactide and poly(l-lactide-co-trimethylene carbonate) blends by fused filament fabrication and fused granulate fabrication using RepRap 3D printer. International Journal of Advanced Manufacturing Technology, 2020, 106, 4933-4944.	1.5	11
5	Modyfikacja polietylenu maÅ,ej gÄ™stoÅ›ci dodatkami antystatycznymi i uniepalniajÄcymi. Przemysl Chemiczny 2020, 1, 36-39.	'0.0	O
6	Facile and Very Sensitive Electrochemical Method for Evaluating the Release Kinetics of Caffeine from Bioactive Polymeric Scaffolds. Journal of the Electrochemical Society, 2018, 165, E89-E96.	1.3	0
7	The influence of sterilization on properties of polyurethane/polylactide blend. Science Technology and Innovation, 2018, 2, 13-18.	0.0	5
8	Polyurethane/Polylactide-Blend Films Doped with Zinc Ions for the Growth and Expansion of Human Olfactory Ensheathing Cells (OECs) and Adipose-Derived Mesenchymal Stromal Stem Cells (ASCs) for Regenerative Medicine Applications. Polymers, 2016, 8, 175.	2.0	10
9	Polyurethane/Polylactide-Based Electrospun Nonwovens as Carriers for Human Adipose-Derived Stromal Stem Cells and Chondrogenic Progenitor Cells. Polymer-Plastics Technology and Engineering, 2016, 55, 1897-1907.	1.9	3
10	Effect of substrate elasticity on macroscopic parameters of fish keratocyte migration. Physical Biology, 2016, 13, 054001.	0.8	5
11	Lizard tail spinal cord: a new experimental model of spinal cord injury without limb paralysis. FASEB Journal, 2016, 30, 1391-1403.	0.2	15
12	Characterization of Olfactory Ensheathing Glial Cells Cultured on Polyurethane/Polylactide Electrospun Nonwovens. International Journal of Polymer Science, 2015, 2015, 1-10.	1.2	12
13	Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications. Materials Science and Engineering C, 2015, 52, 163-170.	3.8	44
14	Fly ash used as a reinforcing and flame-retardant filler in low-density polyethylene. Polimery, 2015, 60, 251-257.	0.4	12
15	Wear behaviour of polyurethane composites with respect to the other mechanical properties. World Journal of Engineering, 2014, 11, 139-146.	1.0	1
16	Assessment of <i>In vivo</i> behavior of polymer tube nerve grafts simultaneously with the peripheral nerve regeneration process using scanning electron microscopy technique. Scanning, 2013, 35, 232-245.	0.7	5
17	Influence of calcium alginate on peripheral nerve regeneration: <i>In vivo</i> study. Biotechnology and Applied Biochemistry, 2013, 60, 547-556.	1.4	18

Effect of addition of montmorillonite and carbon nanotubes on thermal resistance of poly(methyl) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

#	Article	IF	CITATIONS
19	Influence of Alginates on Tube Nerve Grafts of Different Elasticity - Preliminary <i>in Vivo</i> Study. Journal of Biomaterials and Nanobiotechnology, 2012, 03, 20-30.	1.0	8
20	Spectroscopic and structural characterization of low molecular weight fractions of polyaniline. Polymer, 2005, 46, 1485-1495.	1.8	158
21	Conformations of polyaniline in polymer blends. Journal of Molecular Structure, 2004, 701, 13-18.	1.8	54
22	Water soluble polyaniline. Synthetic Metals, 2003, 135-136, 261-262.	2.1	35
23	One-step polymerization leading to conducting polyaniline. Synthetic Metals, 2003, 135-136, 263-264.	2.1	11
24	Structural properties of emeraldine base and the role of water contents: X-ray diffraction and computer modelling study. Synthetic Metals, 2002, 126, 27-35.	2.1	49
25	Protonation/plasticization competitions in polyaniline doped with bis(2-ethylhexyl) hydrogen phosphate. Synthetic Metals, 2002, 129, 229-233.	2.1	20
26	Precipitation polymerization of aniline in the presence of water-soluble organic acids. Journal of Polymer Science Part A, 2002, 40, 3562-3569.	2.5	13
27	X-ray study of plasticized polyaniline. European Polymer Journal, 2002, 38, 947-951.	2.6	20
28	Polyaniline – fractionation, spectroscopic and structural properties. Synthetic Metals, 2001, 119, 303-304.	2.1	1
29	Near Infrared Studies of Polymer Blends. Molecular Crystals and Liquid Crystals, 2000, 353, 561-566.	0.3	2
30	Polyaniline as a near-infrared radiation absorbing additive. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 68, 76-79.	1.7	2
31	Polyaniline as a support for urease immobilization. Journal of Molecular Catalysis B: Enzymatic, 1999, 6, 549-553.	1.8	64
32	The influence of solvent on polyaniline electrical contact. Synthetic Metals, 1999, 101, 719.	2.1	1
33	Conductivity of blends of polyaniline with PMMA and cellulose acetate: aging studies. Synthetic Metals, 1999, 101, 720-721.	2.1	12
34	Conducting blends of polyaniline with conventional polymers. Synthetic Metals, 1997, 84, 117-118.	2.1	102
35	Raman Spectroscopic Studies of Regioregular Poly(3-alkylthiophenes). The Journal of Physical Chemistry, 1996, 100, 12532-12539.	2.9	242
36	Thermally processable polyaniline protonated with diphenyl phosphate â€" preparation and structural aspects. Synthetic Metals, 1996, 80, 191-193.	2.1	29

#	Article	lF	CITATIONS
37	Rheological behavior of plasticized polyaniline. Journal of Applied Polymer Science, 1996, 61, 1339-1343.	1.3	12
38	Phosphoric acid diesters protonated polyaniline: Preparation, spectroscopic properties, and processability. Journal of Polymer Science Part A, 1995, 33, 1437-1445.	2.5	58
39	Raman spectroscopic studies of polyaniline protonation with bis(2-ethylhexyl) hydrogen phosphate. Synthetic Metals, 1995, 75, 69-74.	2.1	34
40	Thermally processable conducting polyaniline. Synthetic Metals, 1995, 69, 113-115.	2.1	77
41	Processable conducting polymers obtained via protonation of polyaniline with phosphoric acid esters. Polymer, 1993, 34, 4235-4240.	1.8	79
42	Processable conducting polyaniline. Synthetic Metals, 1993, 57, 3520-3525.	2.1	112
43	Poly(3,3′-dimethoxy-2,2′-bithiophene): Synthesis and comparison with poly(3-methoxythiophene). Journal of Polymer Science Part A, 1992, 30, 1741-1746.	2.5	10
44	Conducting polymers prepared from symmetrically disubstituted bithiophenes - electrochemical and spectroelectrochemical behaviour. Synthetic Metals, 1991, 43, 3009-3012.	2.1	5