Ran Ang

List of Publications by Citations

Source: https://exaly.com/author-pdf/5855673/ran-ang-publications-by-citations.pdf

Version: 2024-04-04

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

108
papers1,630
citations21
h-index34
g-index111
ext. papers1,970
ext. citations4.6
avg, IF4.5
L-index

#	Paper	IF	Citations
108	Thermoelectricity Generation and Electron-Magnon Scattering in a Natural Chalcopyrite Mineral from a Deep-Sea Hydrothermal Vent. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 12909-13	16.4	125
107	Superconductivity induced by Se-doping in layered charge-density-wave system 1T-TaS2\square Sex. <i>Applied Physics Letters</i> , 2013 , 102, 192602	3.4	88
106	Real-space coexistence of the melted Mott state and superconductivity in Fe-substituted 1T-TaS2. <i>Physical Review Letters</i> , 2012 , 109, 176403	7.4	84
105	Fabrication and electronic transport properties of Bi nanotube arrays. <i>Applied Physics Letters</i> , 2006 , 88, 103119	3.4	84
104	Superconductivity and bandwidth-controlled Mott metal-insulator transition in 1T-TaS2\(\mathbb{U}\)Sex. <i>Physical Review B</i> , 2013 , 88,	3.3	56
103	Tunning of microstructure and thermoelectric properties of Ca3Co4O9 ceramics by high-magnetic-field sintering. <i>Journal of Applied Physics</i> , 2011 , 110, 123713	2.5	50
102	Synthesis of amidoximated graphene oxide nanoribbons from unzipping of multiwalled carbon nanotubes for selective separation of uranium(VI). <i>RSC Advances</i> , 2015 , 5, 89309-89318	3.7	46
101	Enhanced Thermoelectric Performance and Room-Temperature Spin-State Transition of Co4+ Ions in the Ca3Co4\(\mathbb{R}\)RhxO9 System. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 11459-11470	3.8	45
100	Diamagnetism, transport, magnetothermoelectric power, and magnetothermal conductivity in electron-doped CaMn1 WxO3 manganites. <i>Journal of Applied Physics</i> , 2006 , 100, 063902	2.5	43
99	Enhanced electronic correlation and thermoelectric response by Cu-doping in Ca3Co4O9 single crystals. <i>Dalton Transactions</i> , 2012 , 41, 11176-86	4.3	41
98	Routes for advancing SnTe thermoelectrics. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 16790-16813	13	39
97	Ga-Doping-Induced Carrier Tuning and Multiphase Engineering in n-type PbTe with Enhanced Thermoelectric Performance. <i>ACS Applied Materials & District Research</i> , 10, 22401-22407	9.5	32
96	Atomistic origin of an ordered superstructure induced superconductivity in layered chalcogenides. <i>Nature Communications</i> , 2015 , 6, 6091	17.4	32
95	Structural, transport, and magnetic properties in the Ti-doped manganites LaMn1\(\text{ITixO3} \) (0\(\text{QID}.2 \)). Solid State Communications, 2005 , 136, 268-272	1.6	31
94	Extraordinary Role of Bi for Improving Thermoelectrics in Low-Solubility SnTe-CdTe Alloys. <i>ACS Applied Materials & Discrete Applied & Discr</i>	9.5	27
93	Effects of Co doping in bilayered manganite LaSr2Mn2O7: Resistivity, thermoelectric power, and thermal conductivity. <i>Physical Review B</i> , 2005 , 72,	3.3	27
92	Studies of structural, magnetic, electrical and thermal properties in layered perovskite cobaltite SrLnCoO4(Ln = La, Ce, Pr, Nd, Eu, Gd and Tb). <i>Journal Physics D: Applied Physics</i> , 2008 , 41, 045404	3	24

(2005-2006)

91	Small-polaron hopping conduction in La0.9Te0.1MnO3 above the metal-insulator transition. <i>Materials Letters</i> , 2006 , 60, 3281-3285	3.3	24	
90	Band and Phonon Engineering for Thermoelectric Enhancements of Rhombohedral GeTe. <i>ACS Applied Materials & Description of the Applied M</i>	9.5	23	
89	Transport mechanism and magnetothermoelectric power of electron-doped manganites La0.85Te0.15Mn1⊠CuxO3 (0?x?0.20). <i>Journal of Applied Physics</i> , 2006 , 100, 073706	2.5	23	
88	A narrow band contribution with Anderson localization in Ag-doped layered cobaltites Bi2Ba3Co2Oy. <i>Journal of Applied Physics</i> , 2007 , 102, 073721	2.5	21	
87	The evidence of the glassy behavior in the layered cobaltites. <i>Applied Physics Letters</i> , 2008 , 92, 162508	3.4	20	
86	Size dependence of electronic and magnetic properties of double- perovskite Sr2FeMoO6. <i>Solid State Communications</i> , 2008 , 145, 98-102	1.6	20	
85	Microstructure and bubble formation of AlkBi doped tungsten prepared by spark plasma sintering. <i>International Journal of Refractory Metals and Hard Materials</i> , 2016 , 54, 335-341	4.1	18	
84	Thermoelectricity Generation and ElectronMagnon Scattering in a Natural Chalcopyrite Mineral from a Deep-Sea Hydrothermal Vent. <i>Angewandte Chemie</i> , 2015 , 127, 13101-13105	3.6	17	
83	Exchange bias in the layered cobaltite Sr1.5Pr0.5CoO4. <i>Journal of Applied Physics</i> , 2008 , 104, 023914	2.5	17	
82	Optimized Strategies for Advancing n-Type PbTe Thermoelectrics: A Review. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 49323-49334	9.5	17	
81	Magnetic and transport properties of La0.7Sr0.3Mn1\(\text{MTixO3}(0 ?x? 0.5)\) films prepared by chemical solution deposition. <i>Journal Physics D: Applied Physics</i> , 2006 , 39, 625-630	3	16	
80	The contribution of narrow band and modulation of thermoelectric performance in doped layered cobaltites Bi2Sr2Co2Oy. <i>Applied Physics Letters</i> , 2012 , 100, 173503	3.4	15	
79	Effect of Mo substitution in the n=3 Ruddlesden-Popper compound Ca4Mn3O10. <i>Physical Review B</i> , 2007 , 75,	3.3	15	
78	Growth of Ca3Co4O9 films: Simple chemical solution deposition and stress induced spontaneous dewetting. <i>Journal of Applied Physics</i> , 2007 , 102, 103519	2.5	15	
77	Boosting the thermoelectric performance of misfit-layered (SnS)1.2(TiS2)2 by a Co- and Cu-substituted alloying effect. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 22909-22914	13	15	
76	Structure, magnetic and transport properties in Ca3Co4\(\mathbb{B}\)SbxO9 ceramics. <i>Journal of Alloys and Compounds</i> , 2013 , 574, 233-239	5.7	14	
75	Enhanced Thermoelectric Performance Induced by Cr Doping at Ca-Sites in Ca3Co4O9 System. Journal of the American Ceramic Society, 2014 , 97, 3589-3596	3.8	14	
74	Reentrant metal-insulator transition in the Cu-doped manganites La1⊠PbxMnO3(x~0.14) single crystals. <i>Physical Review B</i> , 2005 , 72,	3.3	14	

73	High-performance in n-type PbTe-based thermoelectric materials achieved by synergistically dynamic doping and energy filtering. <i>Nano Energy</i> , 2022 , 91, 106706	17.1	14
72	Mechanical alloying boosted SnTe thermoelectrics. <i>Materials Today Physics</i> , 2021 , 17, 100340	8	14
71	Exotic reinforcement of thermoelectric power driven by Ca doping in layered Bi2Sr2\(\mathbb{L}\)CaxCo2Oy. <i>Applied Physics Letters</i> , 2013 , 102, 141907	3.4	13
70	Enhanced Electron Correlation in the In-doped Misfit-Layered Cobaltite Ca3Co4O9 Ceramics. Journal of the American Ceramic Society, 2013, 96, 791-797	3.8	13
69	Intriguing substitution of conducting layer triggered enhancement of thermoelectric performance in misfit-layered (SnS)1.2(TiS2)2. <i>Applied Physics Letters</i> , 2017 , 110, 043507	3.4	12
68	Thermoelectric transport properties in Bi-doped SnTeBnSe alloys. <i>Applied Physics Letters</i> , 2020 , 116, 103901	3.4	12
67	Coexistence of superconductivity and commensurate charge density wave in 4Hb-TaS2\subseteq Sex single crystals. <i>Journal of Applied Physics</i> , 2014 , 115, 043915	2.5	12
66	Low-field magnetoresistance in nanostructured Sr2FeMoO6©eO2 composites. <i>Journal of Applied Physics</i> , 2008 , 103, 083711	2.5	12
65	In situ growth of -axis-oriented thin films on Si(001). Solid State Communications, 2007, 141, 239-242	1.6	12
64	Influence of carbon intercalation on the structural and magnetic properties of Ni3Al. <i>Physica B: Condensed Matter</i> , 2006 , 371, 63-67	2.8	12
63	Improving near-room-temperature thermoelectrics in SnTeMnTe alloys. <i>Applied Physics Letters</i> , 2020 , 116, 193902	3.4	11
62	Strengthening of Thermoelectric Performance via Ir Doping in Layered Ca3Co4O9 System. <i>Journal of the American Ceramic Society</i> , 2014 , 97, 798-804	3.8	11
61	Evolution of the thermoelectric performance in low Ca-doped layered cobaltite Bi2Sr2Co2Oy. <i>Solid State Communications</i> , 2013 , 158, 16-19	1.6	11
60	Individual-Layer Thickness Effects on the Preferred c-Axis-Oriented BiFeO3 Films by Chemical Solution Deposition. <i>Journal of the American Ceramic Society</i> , 2010 , 93, 1682	3.8	11
59	Thermoelectric properties of solgel derived cobaltite Bi2Ca2.4Co2Oy. <i>Physica B: Condensed Matter</i> , 2011 , 406, 2914-2918	2.8	11
58	Internal friction evidence of uncorrelated magnetic clusters in electron-doped manganite Sr0.8Ce0.2MnO3. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2005 , 346, 321-326	2.3	11
57	Structural Evolution of High-Performance Mn-Alloyed Thermoelectric Materials: A Case Study of SnTe. <i>Small</i> , 2021 , 17, e2100525	11	11
56	Thermoelectric properties of p-type MnSe. <i>Journal of Alloys and Compounds</i> , 2019 , 789, 953-959	5.7	10

(2020-2010)

55	The charge trapping and memory effect in SiO2thin films containing Ge nanocrystals. <i>Journal Physics D: Applied Physics</i> , 2010 , 43, 015102	3	10
54	Carrier tuning and multiple phonon scattering induced high thermoelectric performance in n-type Sb-doped PbTe alloys. <i>Applied Physics A: Materials Science and Processing</i> , 2019 , 125, 1	2.6	9
53	Tuning the charge density wave and superconductivity in 6R-TaS2⊠Sex. <i>Journal of Applied Physics</i> , 2015 , 117, 163912	2.5	9
52	Outstanding radiation tolerance and mechanical behavior in ultra-fine nanocrystalline Al1.5CoCrFeNi high entropy alloy films under He ion irradiation. <i>Applied Surface Science</i> , 2020 , 516, 146	129	9
51	Structure and transport properties in Ca3Co4MmxO9 (M=Re and Pt) ceramics. <i>Ceramics International</i> , 2014 , 40, 10545-10550	5.1	9
50	Texturization-Induced In-Plane High-Performance Thermoelectrics and Inapplicability of the Debye Model to Out-of-Plane Lattice Thermal Conductivity in Misfit-Layered Chalcogenides. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 48079-48085	9.5	9
49	Charging effect and capacitance modulation of Ni-rich NiO thin film. <i>Applied Physics Letters</i> , 2009 , 95, 012104	3.4	8
48	Influence of K doping on the properties of perovskite molybdates Ba1\(\textbf{k}\)KxMoO3 (0\(\textbf{Q}\)\(\textbf{D}\). Journal of Alloys and Compounds, 2009 , 479, 22-25	5.7	8
47	Effects of Cr doping in bilayered manganite LaSr2Mn2O7: Resistivity, thermoelectric power, and thermal conductivity. <i>Solid State Communications</i> , 2006 , 137, 492-497	1.6	8
46	Spin-state transition, magnetic, electrical and thermal transport properties of the perovskite cobalt oxide Gd0.7Sr0.3CoO3. <i>Solid State Communications</i> , 2006 , 138, 255-260	1.6	8
45	Achieving high-performance n-type PbTe via synergistically optimizing effective mass and carrier concentration and suppressing lattice thermal conductivity. <i>Chemical Engineering Journal</i> , 2022 , 428, 132601	14.7	8
44	Low lattice thermal conductivity by alloying SnTe with AgSbTe2 and CaTe/MnTe. <i>Applied Physics Letters</i> , 2019 , 115, 073903	3.4	7
43	Band engineering and precipitation enhance thermoelectric performance of SnTe with Zn-doping. <i>Chinese Physics B</i> , 2018 , 27, 047202	1.2	6
42	Transport Properties of CdSb Alloys with a Promising Thermoelectric Performance. <i>ACS Applied Materials & Description of Communication (Natural Science)</i> 11, 27098-27103	9.5	6
41	Enhancement of thermoelectric power in layered Bi2Sr2Co2⊠ Ir x O y single crystals. <i>Journal of Materials Science</i> , 2014 , 49, 4636-4642	4.3	6
40	Structural, magnetic, electrical and thermal transport properties in two-dimensional perovskite Sr1.05Ln0.95CoO4(Ln = La, Ce and Nd) compounds. <i>Journal Physics D: Applied Physics</i> , 2008 , 41, 215009	3	6
39	High Quality Factor Enabled by Multiscale Phonon Scattering for Enhancing Thermoelectrics in Low-Solubility n-Type PbTe-CuTe Alloys. <i>ACS Applied Materials & Discourse Applied Materials </i>	9.5	6
38	Thermoelectric modulation by intrinsic defects in superionic conductor AgxCrSe2. <i>Applied Physics Letters</i> , 2020 , 116, 163901	3.4	5

37	Coexistence of superconductivity and charge-density-wave domain in 1T-FexTa1\(\mathbb{U}\)SSe. <i>Applied Physics Letters</i> , 2014 , 104, 252601	3.4	5
36	Electronic structure of the iron chalcogenide KFeAgTe2 revealed by angle-resolved photoemission spectroscopy. <i>Physical Review B</i> , 2013 , 88,	3.3	5
35	Aging-Induced Strong Anomalous Hall Effect at Room Temperature for Cu(Co) Nanoparticle Film. Journal of Physical Chemistry C, 2008 , 112, 1837-1841	3.8	5
34	The magnetic, electrical and thermal transport studies in the layered cobalt oxide Nd1\(\text{Nd1}\(\text{Sr1} + xCoO4(x = 0.25 and 0.33). \) Journal Physics D: Applied Physics, 2007 , 40, 5206-5212	3	5
33	Influence of Te doping on the perovskite manganite La0.5Ca0.5MnO3. <i>Solid State Communications</i> , 2006 , 138, 505-510	1.6	5
32	Structural, magnetic and transport properties in the manganites La0.7Sr0.3\(\text{ITexMnO3}\) (0\(\text{Q0}\).15). Solid State Communications, 2005, 134, 443-447	1.6	5
31	Direct observation of melted Mott state evidenced from Raman scattering in 1T-TaS 2 single crystal. <i>Chinese Physics B</i> , 2018 , 27, 017104	1.2	4
30	Structure, magnetic properties, and electrical transport in layered cobaltites Sr2NPrxCoO4. <i>Journal of Applied Physics</i> , 2008 , 103, 103707	2.5	4
29	Magnetic and transport properties in double-doping La(2+4x)/3Sr(1½x)/3Mn1½CuxO3 (0?x?0.20) systems. <i>Journal of Magnetism and Magnetic Materials</i> , 2006 , 305, 325-331	2.8	4
28	Studies of electrical and thermal transport properties of the electron-doped manganite Sr0.9Ce0.1MnO3. <i>Physica B: Condensed Matter</i> , 2005 , 367, 243-248	2.8	4
27	Evaluation of thermoelectric CdSnAs2 with intrinsically low effective mass. <i>Journal of Alloys and Compounds</i> , 2019 , 809, 151772	5.7	3
26	Advancing thermoelectrics by vacancy engineering and band manipulation in Sb-doped SnTettdTe alloys. <i>Applied Physics Letters</i> , 2021 , 119, 172101	3.4	3
25	Synergistic tuning of carrier mobility, effective mass, and point defects scattering triggered high thermoelectric performance in n-type Ge-doped PbTe. <i>Journal of Applied Physics</i> , 2019 , 125, 055104	2.5	3
24	Enhancing Near-Room-Temperature GeTe Thermoelectrics through In/Pb Co-doping. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 37273-37279	9.5	3
23	Enhanced thermoelectric performance of n-type Nb-doped PbTe by compensating resonant level and inducing atomic disorder. <i>Materials Today Physics</i> , 2022 , 24, 100677	8	3
22	Structural, magnetic, and transport properties in La(2+4x)/3Sr(1½x)/3Mn1½CuxO3 (0?x?0.20) system. <i>Journal of Magnetism and Magnetic Materials</i> , 2006 , 302, 473-478	2.8	2
21	The Young's modulus and electrical and magnetic properties of La0.5Ca0.5\(\mathbb{\text{T}}\)Exmod Texmo 3. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2005 , 342, 491-496	2.3	2
20	Study of the magnetization and transport properties of the La(2+x)/3Sr(1🛭)/3Mn1 🖟 CrxO3 (0🖾 0.2) system. <i>Solid State Communications</i> , 2005 , 135, 467-470	1.6	2

(2014-2005)

19	JahnIIIeller transition and electronphonon interaction in Cr-doped manganites Sr0.9Ce0.1Mn1IICryO3. <i>Solid State Communications</i> , 2005 , 136, 196-200	1.6	2
18	Superconducting phase diagram and the evolution of electronic structure across charge density wave in underdoped 1TtuiiSe2 under hydrostatic pressure. <i>Physical Review B</i> , 2021 , 104,	3.3	2
17	Reducing Effective Mass for Advancing Thermoelectrics in Sb/Bi-Doped AgCrSe Compounds. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 36347-36354	9.5	2
16	Se substitution and micro-nano-scale porosity enhancing thermoelectric Cu 2 Te. <i>Chinese Physics B</i> , 2018 , 27, 047204	1.2	2
15	Boosting thermoelectrics by alloying Cu2Se in SnTe-CdTe compounds. <i>Journal of Materials Science and Technology</i> , 2021 , 89, 45-51	9.1	2
14	Remarkable electron and phonon transports in low-cost SnS: A new promising thermoelectric material. <i>Science China Materials</i> , 2022 , 65, 1143-1155	7.1	2
13	Parasitic memory effect induced by high erasing pulses in metal-oxide-semiconductor field-effect transistor device containing silicon nanocrystals. <i>Journal of Applied Physics</i> , 2009 , 105, 114501	2.5	1
12	Charging influence on current conduction in NiO thin film embedded with Ni nanocrystals. <i>Journal Physics D: Applied Physics</i> , 2009 , 42, 225104	3	1
11	The magnetothermoelectric power in the Y- and Ho-doped La0.9Te0.1MnO3. <i>Solid State Communications</i> , 2008 , 145, 337-340	1.6	1
10	Spin polarization and transport in the manganite La0.85Te0.15Mn0.9Cu0.1O3. <i>Physics Letters, Section A: General, Atomic and Solid State Physics,</i> 2006 , 359, 295-299	2.3	1
9	Diamagnetism and relative Young modulus in the perovskite manganites CaMn1 V xO3 (0 M.0.08). Solid State Communications, 2006 , 140, 416-421	1.6	1
8	Superconductivity related to the suppression of exciton formation in 1T-TiSe. <i>Journal of Physics Condensed Matter</i> , 2020 , 32, 425602	1.8	1
7	Alloying Cr2/3Te in AgCrSe2 compound for improving thermoelectrics. <i>Applied Physics Letters</i> , 2021 , 118, 193902	3.4	1
6	Germanium isotope effect induced guest rattling and cage distortion in clathrates. <i>Journal of Materiomics</i> , 2018 , 4, 338-344	6.7	1
5	Strong Anisotropic Thermal Conductivity in Polycrystalline Layers of (AgxSn1-xS)1.2(TiS2)2 with Prospects Toward Improved Thermoelectric Performance. <i>Annalen Der Physik</i> , 2020 , 532, 1900551	2.6	O
4	Broadening temperature plateau of high zTs in PbTe doped Bi0\textit{BSb1}\textit{T} Te3 through defect carrier regulation and multi-scale phonon scattering. <i>Materials Today Physics</i> , 2022 , 22, 100610	8	O
3	Effect of multisite alloying and chloride doping for realizing a high thermoelectric performance in misfit-layered chalcogenide. <i>Journal of Alloys and Compounds</i> , 2020 , 840, 155756	5.7	
2	Magnetic and Transport Properties Based on Transition-Metal Compounds. <i>Advances in Condensed Matter Physics</i> , 2014 , 2014, 1-2	1	

Magnetic, electrical, and thermal characterization of La0.9Te0.1Mn1以CoxO3 (0.以2). *Journal of Materials Research*, **2007**, 22, 2943-2952

2.5