Jane A Mckeating

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5855493/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Complete Replication of Hepatitis C Virus in Cell Culture. Science, 2005, 309, 623-626.	6.0	2,099
2	Highly Permissive Cell Lines for Subgenomic and Genomic Hepatitis C Virus RNA Replication. Journal of Virology, 2002, 76, 13001-13014.	1.5	1,093
3	Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature, 2007, 446, 801-805.	13.7	1,082
4	Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7271-7276.	3.3	728
5	EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nature Medicine, 2011, 17, 589-595.	15.2	631
6	Broadly neutralizing antibodies protect against hepatitis C virus quasispecies challenge. Nature Medicine, 2008, 14, 25-27.	15.2	556
7	Characterization of Hepatitis C Virus E2 Glycoprotein Interaction with a Putative Cellular Receptor, CD81. Journal of Virology, 1999, 73, 6235-6244.	1.5	428
8	Cell culture-grown hepatitis C virus is infectious in vivo and can be recultured in vitro. Proceedings of the United States of America, 2006, 103, 3805-3809.	3.3	408
9	Neutralizing antibody response during acute and chronic hepatitis C virus infection. Proceedings of the United States of America, 2004, 101, 10149-10154.	3.3	376
10	Hepatitis C Virus Continuously Escapes From Neutralizing Antibody and T-Cell Responses During Chronic Infection In Vivo. Gastroenterology, 2007, 132, 667-678.	0.6	372
11	Hepatitis C Virus Glycoproteins Interact with DC-SIGN and DC-SIGNR. Journal of Virology, 2003, 77, 4070-4080.	1.5	347
12	Time- and Temperature-Dependent Activation of Hepatitis C Virus for Low-pH-Triggered Entry. Journal of Virology, 2006, 80, 1734-1741.	1.5	347
13	CD81 Is Required for Hepatitis C Virus Glycoprotein-Mediated Viral Infection. Journal of Virology, 2004, 78, 1448-1455.	1.5	322
14	Efficient Replication of Hepatitis C Virus Genotype 1a RNAs in Cell Culture. Journal of Virology, 2003, 77, 3181-3190.	1.5	317
15	Hepatitis C virus cell-cell transmission in hepatoma cells in the presence of neutralizing antibodies. Hepatology, 2008, 47, 17-24.	3.6	315
16	The V3 Loops of the HIV-1 and HTV-2 Surface Glycoproteins Contain Proteolytic Cleavage Sites: A Possible Function in Viral Fusion?. AIDS Research and Human Retroviruses, 1991, 7, 3-16.	0.5	305
17	Viral hepatitis and liver cancer. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160274.	1.8	265
18	An engineered poliovirus chimaera elicits broadly reactive HIV-1 neutralizing antibodies. Nature, 1989, 339, 385-388.	13.7	252

#	Article	IF	CITATIONS
19	Characterization of HIV-1 neutralization escape mutants. Aids, 1989, 3, 777-784.	1.0	248
20	Initiation of Hepatitis C Virus Infection Is Dependent on Cholesterol and Cooperativity between CD81 and Scavenger Receptor B Type I. Journal of Virology, 2007, 81, 374-383.	1.5	234
21	Persistent Hepatitis C Virus Infection In Vitro: Coevolution of Virus andHost. Journal of Virology, 2006, 80, 11082-11093.	1.5	228
22	Neutralizing Antibody-Resistant Hepatitis C Virus Cell-to-Cell Transmission. Journal of Virology, 2011, 85, 596-605.	1.5	218
23	Hepatitis C Virus Infects the Endothelial Cells of the Blood-Brain Barrier. Gastroenterology, 2012, 142, 634-643.e6.	0.6	203
24	Identification of Amino Acid Residues in CD81 Critical for Interaction with Hepatitis C Virus Envelope Glycoprotein E2. Journal of Virology, 2000, 74, 3642-3649.	1.5	202
25	Multiple effects of silymarin on the hepatitis C virus lifecycle. Hepatology, 2010, 51, 1912-1921.	3.6	191
26	The Neutralizing Activity of Anti-Hepatitis C Virus Antibodies Is Modulated by Specific Glycans on the E2 Envelope Protein. Journal of Virology, 2007, 81, 8101-8111.	1.5	187
27	Claudin Association with CD81 Defines Hepatitis C Virus Entry. Journal of Biological Chemistry, 2010, 285, 21092-21102.	1.6	182
28	Subcellular Localization of Hepatitis C Virus Structural Proteins in a Cell Culture System That Efficiently Replicates the Virus. Journal of Virology, 2006, 80, 2832-2841.	1.5	178
29	Humoral Immune Response in Acute Hepatitis C Virus Infection. Clinical Infectious Diseases, 2005, 41, 667-675.	2.9	172
30	CD81 and Claudin 1 Coreceptor Association: Role in Hepatitis C Virus Entry. Journal of Virology, 2008, 82, 5007-5020.	1.5	170
31	Functional analysis of hepatitis C virus E2 glycoproteins and virus-like particles reveals structural dissimilarities between different forms of E2. Journal of General Virology, 2001, 82, 1877-1883.	1.3	170
32	Functional Analysis of Cell Surface-Expressed Hepatitis C Virus E2 Glycoprotein. Journal of Virology, 1999, 73, 6782-6790.	1.5	158
33	Identification of a Residue in Hepatitis C Virus E2 Glycoprotein That Determines Scavenger Receptor BI and CD81 Receptor Dependency and Sensitivity to Neutralizing Antibodies. Journal of Virology, 2008, 82, 12020-12029.	1.5	153
34	Hypoxia inducible factors in liver disease and hepatocellular carcinoma: Current understanding and future directions. Journal of Hepatology, 2014, 61, 1397-1406.	1.8	152
35	Characterization of recombinant gp120 and gp160 from HIV-1. Aids, 1990, 4, 307-316.	1.0	151
36	Diverse Hepatitis C Virus Glycoproteins Mediate Viral Infection in a CD81-Dependent Manner. Journal of Virology, 2004, 78, 8496-8505.	1.5	151

#	Article	IF	CITATIONS
37	Diverse CD81 Proteins Support Hepatitis C Virus Infection. Journal of Virology, 2006, 80, 11331-11342.	1.5	151
38	Monoclonal Anti-Claudin 1 Antibodies Prevent Hepatitis C Virus Infection of Primary Human Hepatocytes. Gastroenterology, 2010, 139, 953-964.e4.	0.6	151
39	Binding of the Hepatitis C Virus E2 Glycoprotein to CD81 Is Strain Specific and Is Modulated by a Complex Interplay between Hypervariable Regions 1 and 2. Journal of Virology, 2003, 77, 1856-1867.	1.5	150
40	Hepatitis B virus genome recycling and de novo secondary infection events maintain stable cccDNA levels. Journal of Hepatology, 2018, 69, 1231-1241.	1.8	147
41	Discordant Role of CD4 T-Cell Response Relative to Neutralizing Antibody and CD8 T-Cell Responses in Acute Hepatitis C. Gastroenterology, 2007, 132, 654-666.	0.6	146
42	Inhibition of hepatitis C virus infection by anti-claudin-1 antibodies is mediated by neutralization of E2-CD81-Claudin-1 associations. Hepatology, 2010, 51, 1144-1157.	3.6	144
43	Identification of Amino Acid Residues Critical for Aggregation of Human CC Chemokines Macrophage Inflammatory Protein (MIP)-1α, MIP-1β, and RANTES. Journal of Biological Chemistry, 1999, 274, 16077-16084.	1.6	142
44	HRas Signal Transduction Promotes Hepatitis C Virus Cell Entry by Triggering Assembly of the Host Tetraspanin Receptor Complex. Cell Host and Microbe, 2013, 13, 302-313.	5.1	141
45	Scavenger Receptor BI and BII Expression Levels Modulate Hepatitis C Virus Infectivity. Journal of Virology, 2007, 81, 3162-3169.	1.5	139
46	Superinfection Exclusion in Cells Infected with Hepatitis C Virus. Journal of Virology, 2007, 81, 3693-3703.	1.5	134
47	IFITM1 is a tight junction protein that inhibits hepatitis C virus entry. Hepatology, 2013, 57, 461-469.	3.6	134
48	Small molecule scavenger receptor BI antagonists are potent HCV entry inhibitors. Journal of Hepatology, 2011, 54, 48-55.	1.8	129
49	Clearance of persistent hepatitis C virus infection in humanized mice using a claudin-1-targeting monoclonal antibody. Nature Biotechnology, 2015, 33, 549-554.	9.4	129
50	Potential anti-COVID-19 agents, cepharanthine and nelfinavir, and their usage for combination treatment. IScience, 2021, 24, 102367.	1.9	126
51	The past, present and future of neutralizing antibodies for hepatitis C virus. Antiviral Research, 2014, 105, 100-111.	1.9	125
52	Serum-Derived Hepatitis C Virus Infection of Primary Human Hepatocytes Is Tetraspanin CD81 Dependent. Journal of Virology, 2008, 82, 569-574.	1.5	124
53	Synergistic interaction between ligands binding to the CD4 binding site and V3 domain of human immunodeficiency virus type I gpl20. Virology, 1992, 191, 732-742.	1.1	123
54	Polymersome-Mediated Delivery of Combination Anticancer Therapy to Head and Neck Cancer Cells: 2D and 3D <i>in Vitro</i> Evaluation. Molecular Pharmaceutics, 2014, 11, 1176-1188.	2.3	122

#	Article	IF	CITATIONS
55	Oxidized low-density lipoprotein inhibits hepatitis C virus cell entry in human hepatoma cells. Hepatology, 2006, 43, 932-942.	3.6	119
56	Polarization Restricts Hepatitis C Virus Entry into HepG2 Hepatoma Cells. Journal of Virology, 2009, 83, 6211-6221.	1.5	117
57	Hepatitis C Virus Induces CD81 and Claudin-1 Endocytosis. Journal of Virology, 2012, 86, 4305-4316.	1.5	110
58	An immunodominant NP105–113-B*07:02 cytotoxic T cell response controls viral replication and is associated with less severe COVID-19 disease. Nature Immunology, 2022, 23, 50-61.	7.0	110
59	Functional Characterization of Intracellular and Secreted Forms of a Truncated Hepatitis C Virus E2 Glycoprotein. Journal of Virology, 2000, 74, 702-709.	1.5	108
60	Effect of Cell Polarization on Hepatitis C Virus Entry. Journal of Virology, 2008, 82, 461-470.	1.5	105
61	Structural Flexibility of a Conserved Antigenic Region in Hepatitis C Virus Glycoprotein E2 Recognized by Broadly Neutralizing Antibodies. Journal of Virology, 2015, 89, 2170-2181.	1.5	96
62	Binding of Hepatitis C Virus E2 Glycoprotein to CD81 Does Not Correlate with Species Permissiveness to Infection. Journal of Virology, 2000, 74, 5933-5938.	1.5	94
63	Insights From Deep Sequencing of the HBV Genome—Unique, Tiny, and Misunderstood. Gastroenterology, 2019, 156, 384-399.	0.6	92
64	Hepatitis C virus receptor expression in normal and diseased liver tissue. Hepatology, 2008, 47, 418-427.	3.6	90
65	Mutations in Hepatitis C Virus E2 Located outside the CD81 Binding Sites Lead to Escape from Broadly Neutralizing Antibodies but Compromise Virus Infectivity. Journal of Virology, 2009, 83, 6149-6160.	1.5	90
66	Characterization of Infectious Retroviral Pseudotype Particles Bearing Hepatitis C Virus Glycoproteins. Journal of Virology, 2004, 78, 6875-6882.	1.5	89
67	Structure and function of the HIV envelope. Aids, 1989, 3, S35-42.	1.0	88
68	Expression of DC-SIGN and DC-SIGNR on Human Sinusoidal Endothelium. American Journal of Pathology, 2006, 169, 200-208.	1.9	88
69	Protein Kinase A-Dependent Step(s) in Hepatitis C Virus Entry and Infectivity. Journal of Virology, 2008, 82, 8797-8811.	1.5	87
70	Identification of a monoclonal antibody to abscission tissue that recognises xylose/fucose-containing N-linked oligosaccharides from higher plants. Planta, 1988, 175, 506-512.	1.6	85
71	An enzyme-linked immunosorbent assay for antibodies to the envelope glycoproteins of divergent strains of HIV-1. Aids, 1989, 3, 155-164.	1.0	84
72	In vitro selection of a neutralization-resistant hepatitis C virus escape mutant. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19450-19455.	3.3	82

#	Article	IF	CITATIONS
73	Hepatitis C virus envelope glycoprotein immunization of rodents elicits cross-reactive neutralizing antibodies. Vaccine, 2007, 25, 7773-7784.	1.7	81
74	Hepatitis C virus entry: beyond receptors. Reviews in Medical Virology, 2012, 22, 182-193.	3.9	81
75	Hepatitis C virus association with peripheral blood B lymphocytes potentiates viral infection of liver-derived hepatoma cells. Blood, 2009, 113, 585-593.	0.6	76
76	Enhancement of class I HLA antigen expression by cytomegalovirus: Role in amplification of virus infection. Journal of Medical Virology, 1988, 25, 483-495.	2.5	74
77	A dual role for hypoxia inducible factor-1α in the hepatitis C virus lifecycle and hepatoma migration. Journal of Hepatology, 2012, 56, 803-809.	1.8	74
78	Hepatitis C Virus Infection Reduces Hepatocellular Polarity in a Vascular Endothelial Growth Factor–Dependent Manner. Gastroenterology, 2010, 138, 1134-1142.	0.6	73
79	The circadian clock components BMAL1 and REV-ERBα regulate flavivirus replication. Nature Communications, 2019, 10, 377.	5.8	71
80	Development of novel therapies for hepatitis C. Antiviral Research, 2010, 86, 79-92.	1.9	70
81	Rat monoclonal antibodies to nonoverlapping epitopes of human immunodeficiency virus type 1 gp120 block CD4 binding in Vitro. Virology, 1991, 185, 72-79.	1.1	69
82	An alpaca nanobody inhibits hepatitis C virus entry and cell-to-cell transmission. Hepatology, 2013, 58, 932-939.	3.6	69
83	The role of the hepatitis C virus glycoproteins in infection. , 2000, 10, 101-117.		68
84	Hypoxic and pharmacological activation of HIF inhibits SARS-CoV-2 infection of lung epithelial cells. Cell Reports, 2021, 35, 109020.	2.9	64
85	Hepatitis C is associated with perturbation of intrahepatic myeloid and plasmacytoid dendritic cell function. Journal of Hepatology, 2007, 47, 338-347.	1.8	63
86	Hepatitis C Virus (HCV)–Specific Immune Responses of Longâ€Term Injection Drug Users Frequently Exposed to HCV. Journal of Infectious Diseases, 2008, 198, 203-212.	1.9	62
87	Autotaxin-lysophosphatidic acid receptor signalling regulates hepatitis C virus replication. Journal of Hepatology, 2017, 66, 919-929.	1.8	60
88	Hepatitis C Virus Infection of Neuroepithelioma Cell Lines. Gastroenterology, 2010, 139, 1365-1374.e2.	0.6	59
89	Combined Adenovirus Vector and Hepatitis C Virus Envelope Protein Prime-Boost Regimen Elicits T Cell and Neutralizing Antibody Immune Responses. Journal of Virology, 2014, 88, 5502-5510.	1.5	59
90	Accurate targeted long-read DNA methylation and hydroxymethylation sequencing with TAPS. Genome Biology, 2020, 21, 54.	3.8	57

6

#	Article	IF	CITATIONS
91	Hepatitis C virus and alanine aminotransferase kinetics following B-lymphocyte depletion with rituximab: evidence for a significant role of humoral immunity in the control of viremia in chronic HCV liver disease. Blood, 2007, 109, 845-846.	0.6	55
92	Immunization of Human Volunteers With Hepatitis C Virus Envelope Glycoproteins Elicits Antibodies That Cross-Neutralize Heterologous Virus Strains. Journal of Infectious Diseases, 2011, 204, 811-813.	1.9	55
93	Naturally Occurring Antibodies That Recognize Linear Epitopes in the Amino Terminus of the Hepatitis C Virus E2 Protein Confer Noninterfering, Additive Neutralization. Journal of Virology, 2012, 86, 2739-2749.	1.5	54
94	Targeting human Acyl-CoA:cholesterol acyltransferase as a dual viral and TÂcell metabolic checkpoint. Nature Communications, 2021, 12, 2814.	5.8	54
95	Mechanisms of viral entry: sneaking in the front door. Protoplasma, 2010, 244, 15-24.	1.0	52
96	The Circadian Clock and Viral Infections. Journal of Biological Rhythms, 2021, 36, 9-22.	1.4	52
97	Interplay between circadian clock and viral infection. Journal of Molecular Medicine, 2017, 95, 1283-1289.	1.7	49
98	Glucocorticoids promote Von Hippel Lindau degradation and Hif- $1\hat{1}\pm$ stabilization. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9948-9953.	3.3	49
99	An Immune-Selected Point Mutation in the Transmembrane Protein of Human Immunodeficiency Virus Type 1 (HXB2-Env:Ala 582(→ Thr)) Decreases Viral Neutralization by Monoclonal Antibodies to the CD4-Binding Site. Virology, 1993, 196, 332-337.	1.1	48
100	Monoclonal Antibodies to the C4 Region of Human Immunodeficiency Virus Type 1 gp120: Use in Topological Analysis of a CD4 Binding Site. AIDS Research and Human Retroviruses, 1992, 8, 451-459.	0.5	44
101	The C-terminal region of the hepatitis C virus E1 glycoprotein confers localization within the endoplasmic reticulum. Journal of General Virology, 1999, 80, 1943-1947.	1.3	44
102	Hepatitis C Virus Entry and Neutralization. Clinics in Liver Disease, 2008, 12, 693-712.	1.0	43
103	Entry of hepatitis B and C viruses — recent progress and future impact. Current Opinion in Virology, 2014, 4, 58-65.	2.6	43
104	Time of Day of Vaccination Affects SARS-CoV-2 Antibody Responses in an Observational Study of Health Care Workers. Journal of Biological Rhythms, 2022, 37, 124-129.	1.4	42
105	Hepatoma Cell Density Promotes Claudin-1 and Scavenger Receptor BI Expression and Hepatitis C Virus Internalization. Journal of Virology, 2009, 83, 12407-12414.	1.5	40
106	Activated macrophages promote hepatitis C virus entry in a tumor necrosis factor-dependent manner. Hepatology, 2014, 59, 1320-1330.	3.6	40
107	Hepatoma polarization limits <scp>CD</scp> 81 and hepatitis <scp>C</scp> virus dynamics. Cellular Microbiology, 2013, 15, 430-445.	1.1	39
108	Hepatitis C virus entry and the tetraspanin CD81. Biochemical Society Transactions, 2011, 39, 532-536.	1.6	38

#	Article	IF	CITATIONS
109	IGHV1-69 B Cell Chronic Lymphocytic Leukemia Antibodies Cross-React with HIV-1 and Hepatitis C Virus Antigens as Well as Intestinal Commensal Bacteria. PLoS ONE, 2014, 9, e90725.	1.1	37
110	Passage of HIV-1 Molecular Clones into Different Cell Lines Confers Differential Sensitivity to Neutralization. Virology, 1997, 238, 254-264.	1.1	36
111	The Measles Virus Receptor SLAMF1 Can Mediate Particle Endocytosis. Journal of Virology, 2017, 91, .	1.5	36
112	<i>In silico</i> directed mutagenesis identifies the <scp>CD</scp> 81/claudinâ€1 hepatitis <scp>C</scp> virus receptor interface. Cellular Microbiology, 2012, 14, 1892-1903.	1.1	35
113	Bioportide: an emergent concept of bioactive cell-penetrating peptides. Cellular and Molecular Life Sciences, 2012, 69, 2951-2966.	2.4	34
114	Solute Carrier NTCP Regulates Innate Antiviral Immune Responses Targeting Hepatitis C Virus Infection of Hepatocytes. Cell Reports, 2016, 17, 1357-1368.	2.9	34
115	N-Glycosylation of the Na+-Taurocholate Cotransporting Polypeptide (NTCP) Determines Its Trafficking and Stability and Is Required for Hepatitis B Virus Infection. PLoS ONE, 2017, 12, e0170419.	1.1	34
116	The circadian clock component BMAL1 regulates SARS-CoV-2 entry and replication in lung epithelial cells. IScience, 2021, 24, 103144.	1.9	34
117	Pharmacological activation of the circadian component REV-ERB inhibits HIV-1 replication. Scientific Reports, 2020, 10, 13271.	1.6	33
118	Absolute quantitation of individual SARS-CoV-2 RNA molecules provides a new paradigm for infection dynamics and variant differences. ELife, 2022, 11, .	2.8	33
119	Hepatitis C Virus Envelope Glycoprotein Fitness Defines Virus Population Composition following Transmission to a New Host. Journal of Virology, 2012, 86, 11956-11966.	1.5	31
120	Hypoxia inducible factors regulate hepatitis B virus replication by activating the basal core promoter. Journal of Hepatology, 2021, 75, 64-73.	1.8	31
121	The role of the humoral immune response in HIV infection. Aids, 1996, 10, S97-106.	1.0	30
122	Hepatitis C Virus Glycoprotein E2 Binding to CD81: The Role of E1E2 Cleavage and Protein Glycosylation in Bioactivity. Virology, 2000, 273, 60-66.	1.1	30
123	Monoclonal antiâ€envelope antibody AP33 protects humanized mice against a patientâ€derived hepatitis C virus challenge. Hepatology, 2016, 63, 1120-1134.	3.6	30
124	Effect of scavenger receptor class B type I antagonist ITX5061 in patients with hepatitis C virus infection undergoing liver transplantation. Liver Transplantation, 2016, 22, 287-297.	1.3	30
125	Structural characterization of recombinant human CD81 produced in Pichia pastoris. Protein Expression and Purification, 2008, 57, 206-216.	0.6	28
126	Functional Analysis of Claudin-6 and Claudin-9 as Entry Factors for Hepatitis C Virus Infection of Human Hepatocytes by Using Monoclonal Antibodies. Journal of Virology, 2013, 87, 10405-10410.	1.5	28

#	Article	IF	CITATIONS
127	High resolution sequencing of hepatitis C virus reveals limited intra-hepatic compartmentalization in end-stage liver disease. Journal of Hepatology, 2017, 66, 28-38.	1.8	28
128	Circadian control of hepatitis B virus replication. Nature Communications, 2021, 12, 1658.	5.8	28
129	Clocks, Viruses, and Immunity: Lessons for the COVID-19 Pandemic. Journal of Biological Rhythms, 2021, 36, 23-34.	1.4	28
130	Cholesterol-modifying drugs in COVID-19. Oxford Open Immunology, 2020, 1, iqaa001.	1.2	27
131	Paracrine signals from liver sinusoidal endothelium regulate hepatitis C virus replication. Hepatology, 2014, 59, 375-384.	3.6	26
132	Adaptive Mutations Enhance Assembly and Cell-to-Cell Transmission of a High-Titer Hepatitis C Virus Genotype 5a Core-NS2 JFH1-Based Recombinant. Journal of Virology, 2015, 89, 7758-7775.	1.5	26
133	Chimeric Viruses Expressing Primary Envelope Glycoproteins of Human Immunodeficiency Virus Type I Show Increased Sensitivity to Neutralization by Human Sera. Virology, 1996, 220, 450-460.	1.1	25
134	Metallo supramolecular cylinders inhibit HIV-1 TAR-TAT complex formation and viral replication in cellulo. Scientific Reports, 2018, 8, 13342.	1.6	23
135	Immunogenicity of full length and truncated forms of the human immunodeficiency virus type I envelope glycoprotein. Immunology Letters, 1996, 51, 101-105.	1.1	22
136	Deep sequencing of hepatitis C virus reveals genetic compartmentalization in cerebrospinal fluid from cognitively impaired patients. Liver International, 2016, 36, 1418-1424.	1.9	22
137	Hypoxic microenvironment shapes HIV-1 replication and latency. Communications Biology, 2020, 3, 376.	2.0	22
138	Soluble CD4 and CD4 Immunoglobulin-Selected HIV-1 Variants: A Phenotypic Characterization. AIDS Research and Human Retroviruses, 1993, 9, 595-604.	0.5	20
139	Early infection events highlight the limited transmissibility of hepatitis C virus in vitro. Journal of Hepatology, 2013, 58, 1074-1080.	1.8	18
140	Oxygen Sensing and Viral Replication: Implications for Tropism and Pathogenesis. Viruses, 2020, 12, 1213.	1.5	18
141	Estimating hepatitis B virus cccDNA persistence in chronic infectionâ€. Virus Evolution, 2021, 7, veaa063.	2.2	18
142	A dual role for SAMHD1 in regulating HBV cccDNA and RT-dependent particle genesis. Life Science Alliance, 2019, 2, e201900355.	1.3	18
143	The <scp>CCCTC</scp> â€binding factor <scp>CTCF</scp> represses hepatitis B virus enhancer I and regulates viral transcription. Cellular Microbiology, 2021, 23, e13274.	1.1	17
144	Hypoxiaâ€Inducible Factor 1 Alpha–Mediated RelB/APOBEC3B Downâ€regulation Allows Hepatitis B Virus Persistence. Hepatology, 2021, 74, 1766-1781.	3.6	17

#	Article	IF	CITATIONS
145	Bacterial flagellin promotes viral entry via an NF-kB and Toll Like Receptor 5 dependent pathway. Scientific Reports, 2019, 9, 7903.	1.6	16
146	Hepatitis C virus infection is associated with hepatic and adipose tissue insulin resistance that improves after viral cure. Clinical Endocrinology, 2019, 90, 440-448.	1.2	16
147	A new panel of epitope mapped monoclonal antibodies recognising the prototypical tetraspanin CD81. Wellcome Open Research, 2017, 2, 82.	0.9	16
148	Lentiviral hepatitis B pseudotype entry requires sodium taurocholate co-transporting polypeptide and additional hepatocyte-specific factors. Journal of General Virology, 2016, 97, 121-127.	1.3	15
149	Hepatitis C virus targets the T cell secretory machinery as a mechanism of immune evasion. Hepatology, 2011, 53, 1846-1853.	3.6	14
150	Synchronised infection identifies early rateâ€limiting steps in the hepatitis B virus life cycle. Cellular Microbiology, 2020, 22, e13250.	1.1	14
151	A Cost-Effectiveness Analysis of Shortened Direct-Acting Antiviral Treatment in Genotype 1 Noncirrhotic Treatment-Naive Patients With Chronic Hepatitis C Virus. Value in Health, 2019, 22, 693-703.	0.1	13
152	In vitro veritas? The challenges of studying hepatitis C virus infectivity in a test tube. Journal of Hepatology, 2007, 46, 355-358.	1.8	12
153	Hypoxic gene expression in chronic hepatitis B virus infected patients is not observed in state-of-the-art in vitro and mouse infection models. Scientific Reports, 2020, 10, 14101.	1.6	12
154	Supramolecular Cylinders Target Bulge Structures in the 5′ UTR of the RNA Genome of SARSâ€CoVâ€⊋ and Inhibit Viral Replication**. Angewandte Chemie - International Edition, 2021, 60, 18144-18151.	7.2	12
155	HIV infactivity. Nature, 1991, 349, 660-660.	13.7	11
156	TNF superfamily members promote hepatitis C virus entry via an NF-κB and myosin light chain kinase dependent pathway. Journal of General Virology, 2017, 98, 405-412.	1.3	11
157	Production, Purification and Characterization of Recombinant, Full-Length Human Claudin-1. PLoS ONE, 2013, 8, e64517.	1.1	11
158	Viral genome wide association study identifies novel hepatitis C virus polymorphisms associated with sofosbuvir treatment failure. Nature Communications, 2021, 12, 6105.	5.8	11
159	A bile acid transporter as a candidate receptor for hepatitis B and D virus entry. Journal of Hepatology, 2013, 58, 1246-1248.	1.8	10
160	A Role for CD81 and Hepatitis C Virus in Hepatoma Mobility. Viruses, 2014, 6, 1454-1472.	1.5	10
161	A PCR assay to quantify patterns of HBV transcription. Journal of General Virology, 2021, 102, .	1.3	10
162	Daytime variation in hepatitis C virus replication kinetics following liver transplant. Wellcome Open Research, 2018, 3, 96.	0.9	9

#	Article	IF	CITATIONS
163	Antigenic Variation within the CD4 Binding Site of Human Immunodeficiency Virus Type 1 gp120: Effects on Chemokine Receptor Utilization. Journal of Virology, 2001, 75, 5593-5603.	1.5	8
164	The complexities of hepatitis C virus entry. Journal of Hepatology, 2009, 51, 609-611.	1.8	8
165	Hepatitis C virus infection of cholangiocarcinoma cell lines. Journal of General Virology, 2015, 96, 1380-1388.	1.3	8
166	Inflammatory Gene Expression Associates with Hepatitis B Virus cccDNA- but Not Integrant-Derived Transcripts in HBeAg Negative Disease. Viruses, 2022, 14, 1070.	1.5	8
167	Neutralization of human immunodeficiency virus. Reviews in Medical Virology, 1992, 2, 35-42.	3.9	7
168	Rituximab Treatment in Hepatitis C Infection: An In Vitro Model to Study the Impact of B Cell Depletion on Virus Infectivity. PLoS ONE, 2011, 6, e25789.	1.1	7
169	The role of circadian clock pathways in viral replication. Seminars in Immunopathology, 2022, 44, 175-182.	2.8	7
170	Glucose and glutamine availability regulate HepG2 transcriptional responses to low oxygen. Wellcome Open Research, 2018, 3, 126.	0.9	6
171	Acute intermittent hypoxia drives hepatic de novo lipogenesis in humans and rodents. Metabolism Open, 2022, 14, 100177.	1.4	6
172	The role of the viral glycoprotein in HIV-1 persistence. Immunology Letters, 1999, 65, 63-70.	1.1	5
173	Structural characterization of CD81–Claudin-1 hepatitis C virus receptor complexes. Biochemical Society Transactions, 2011, 39, 537-540.	1.6	5
174	Daytime variation in hepatitis C virus replication kinetics following liver transplant. Wellcome Open Research, 2018, 3, 96.	0.9	5
175	Type I interferon rapidly restricts infectious hepatitis C virus particle genesis. Hepatology, 2014, 60, 1891-1901.	3.6	4
176	<i>Response</i> : Receptor-Mediated Activation of Immunodeficiency Viruses in Viral Fusion. Science, 1991, 252, 1322-1323.	6.0	4
177	Mutant CD4 Molecules with Improved Binding to HIV Envelope Protein gp120 Selected by Phage Display. Virology, 1997, 234, 196-202.	1.1	3
178	Over the fence or through the gate: how viruses infect polarized cells. Immunotherapy, 2012, 4, 249-251.	1.0	3
179	Heterogeneous claudin-1 expression in human liver. Hepatology, 2013, 57, 854-855.	3.6	3
180	Supramolecular Cylinders Target Bulge Structures in the 5′ UTR of the RNA Genome of SARSâ€CoVâ€⊋ and Inhibit Viral Replication**. Angewandte Chemie, 2021, 133, 18292-18299.	1.6	3

#	Article	IF	CITATIONS
181	Permissivity of primary hepatocytes and hepatoma cell lines to support hepatitis C virus infection. Journal of General Virology, 2015, 96, 1369-1373.	1.3	2
182	A Comprehensive Analysis of the Impact of HIV on HCV Immune Responses and Its Association with Liver Disease Progression in a Unique Plasma Donor Cohort. PLoS ONE, 2016, 11, e0158037.	1.1	2
183	Are the Patterns of Cytomegalovirus Viral Load Seen After Solid Organ Transplantation Affected by Circadian Rhythm?. Journal of Infectious Diseases, 2022, 226, 357-365.	1.9	2
184	A Role for B Cells to Transmit Hepatitis C Virus Infection. Frontiers in Immunology, 2021, 12, 775098.	2.2	2
185	The Effect of Low-Profile Serine Substitutions in the V3 Loop of HIV-1 gp120 IIIB/LAI on the Immunogenicity of the Envelope Protein. Virology, 1998, 251, 59-70.	1.1	1
186	The Involvement of Tight Junction Protein Claudin-1 in Hepatitis C Virus Entry. Current Topics in Membranes, 2010, 65, 273-292.	0.5	1
187	Response : Receptor-Mediated Activation of Immunodeficiency Viruses in Viral Fusion. Science, 1991, 252, 1322-1323.	6.0	1
188	The HCV Envelope Glycoprotein Down-Modulates NF-κB Signalling and Associates With Stimulation of the Host Endoplasmic Reticulum Stress Pathway. Frontiers in Immunology, 2022, 13, 831695.	2.2	1
189	Editorial Overview - Virus entry: Towards reality - Refining models of virus entry. Current Opinion in Virology, 2014, 4, v-vi.	2.6	0
190	Hypoxia is more than HIFs. Journal of Hepatology, 2022, , .	1.8	0