
Pu-Sheng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5855369/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Asymmetric C–H Functionalization Enabled by Pd/Chiral Phosphoric Acid Combined Catalysis. Synthesis, 2022, 54, 4795-4801.	2.3	7
2	Access to chiral homoallylic vicinal diols from carbonyl allylation of aldehydes with allyl ethers via palladium-catalyzed allylic C-H borylation. Science China Chemistry, 2022, 65, 298-303.	8.2	7
3	Modular access to chiral cyclopentanes via formal [2+2+1] annulation enabled by palladium/chiral squaramide relay catalysis. , 2022, 1, 100002.		2
4	A practical FeCl3/HCl photocatalyst for versatile aliphatic C–H functionalization. Chem Catalysis, 2022, 2, 1211-1222.	6.1	41
5	Palladium-catalysed branch- and enantioselective allylic C–H alkylation of α-alkenes. , 2022, 1, 487-496.		12
6	Access to chiral γ-butenolides <i>via</i> palladium-catalyzed asymmetric allylic C–H alkylation of 1,4-dienes. Chemical Communications, 2021, 57, 6748-6751.	4.1	20
7	Asymmetric Photocatalytic C(sp ³)–H Bond Addition to α-Substituted Acrylates. Organic Letters, 2021, 23, 3157-3161.	4.6	39
8	Counteranion-controlled regioselectivity in palladium-catalyzed allylic amination of dienyl allylic carbonates. Tetrahedron, 2021, 84, 131996.	1.9	9
9	Palladium-Catalyzed Allylic Alkylation via Photocatalytic Nucleophile Generation. ACS Catalysis, 2021, 11, 6757-6762.	11.2	19
10	Palladium-Catalyzed Enantioselective C(sp ³)–H/C(sp ³)–H Umpolung Coupling of <i>N</i> -Allylimine and α-Aryl Ketones. Journal of the American Chemical Society, 2021, 143, 20454-20461.	13.7	28
11	Recent Progress in Asymmetric Relay Catalysis of Metal Complex with Chiral Phosphoric Acid. Topics in Current Chemistry, 2020, 378, 9.	5.8	54
12	Palladium-Catalyzed Asymmetric Allylic C–H Functionalization: Mechanism, Stereo- and Regioselectivities, and Synthetic Applications. Accounts of Chemical Research, 2020, 53, 2841-2854.	15.6	122
13	Palladium-catalyzed asymmetric allylic C-H alkylation of 1,4-dienes and glycine Schiff bases. Science China Chemistry, 2020, 63, 454-459.	8.2	32
14	Light-Mediated Asymmetric Aliphatic C–H Alkylation with Hydrogen Atom Transfer Catalyst and Chiral Phosphoric Acid. ACS Catalysis, 2020, 10, 4786-4790.	11.2	55
15	Light-Mediated Chiral Phosphate Catalysis for Asymmetric Dicarbofunctionalization of Enamides. ACS Catalysis, 2020, 10, 8247-8253.	11.2	40
16	Palladium-Catalyzed Asymmetric Allylic C–H Alkylation of 1,4-Dienes with Cyclic β-Keto Esters. Organometallics, 2019, 38, 4014-4021.	2.3	18
17	Monodentate Phosphorus Ligand-Enabled General Palladium-Catalyzed Allylic C–H Alkylation of Terminal Alkenes. Organic Letters, 2019, 21, 6720-6725.	4.6	41
18	Nucleophile Coordination Enabled Regioselectivity in Palladiumâ€Catalyzed Asymmetric Allylic Câ^'H Alkylation. Angewandte Chemie - International Edition, 2019, 58, 16806-16810.	13.8	46

Pu-Sheng Wang

#	Article	IF	CITATIONS
19	Nucleophile Coordination Enabled Regioselectivity in Palladiumâ€Catalyzed Asymmetric Allylic Câ^'H Alkylation. Angewandte Chemie, 2019, 131, 16962-16966.	2.0	9
20	Asymmetric Allylic C–H Alkylation of Allyl Ethers with 2-Acylimidazoles. Journal of the American Chemical Society, 2019, 141, 10616-10620.	13.7	52
21	Nucleophile-Dependent <i>Z</i> / <i>E</i> and Regioselectivity in the Palladium-Catalyzed Asymmetric Allylic C–H Alkylation of 1,4-Dienes. Journal of the American Chemical Society, 2019, 141, 5824-5834.	13.7	89
22	Merging Visible-Light Photoredox and Chiral Phosphate Catalysis for Asymmetric Friedel–Crafts Reaction with in Situ Generation of <i>N</i> Acyl Imines. Organic Letters, 2019, 21, 2993-2997.	4.6	50
23	Asymmetric α-Allylation of Aldehydes with Alkynes by Integrating Chiral Hydridopalladium and Enamine Catalysis. Organic Letters, 2018, 20, 2403-2406.	4.6	40
24	Transition-Metal-Catalyzed Asymmetric Allylation of Carbonyl Compounds with Unsaturated Hydrocarbons. Synthesis, 2018, 50, 956-967.	2.3	38
25	Enantioselective Synthesis of 5-Alkylated Thiazolidinones via Palladium-Catalyzed Asymmetric Allylic C–H Alkylations of 1,4-Pentadienes with 5 <i>H</i> -Thiazol-4-ones. Organic Letters, 2018, 20, 4740-4744.	4.6	47
26	Asymmetric Allylic C-H Alkylation of 1,4-Dienes with Aldehydes. Acta Chimica Sinica, 2018, 76, 857.	1.4	20
27	Palladium-catalyzed Asymmetric Allylic C–H Oxidation for the Formal Synthesis of Gonytolide C. Chemistry Letters, 2017, 46, 1190-1192.	1.3	7
28	An Enantioselective Multicomponent Carbonyl Allylation of Aldehydes with Dienes and Alkynyl Bromides Enabled by Chiral Palladium Phosphate. Advanced Synthesis and Catalysis, 2017, 359, 2383-2389.	4.3	23
29	Access to Chiral Hydropyrimidines through Palladium atalyzed Asymmetric Allylic Câ^'H Amination. Angewandte Chemie - International Edition, 2017, 56, 16032-16036.	13.8	68
30	Palladium(II)-Catalyzed Deacylative Allylic C–H Alkylation. Journal of Organic Chemistry, 2017, 82, 9794-9800.	3.2	19
31	Access to Chiral Hydropyrimidines through Palladium atalyzed Asymmetric Allylic Câ^'H Amination. Angewandte Chemie, 2017, 129, 16248-16252.	2.0	18
32	Highly Enantioselective Allylic C–H Alkylation of Terminal Olefins with Pyrazol-5-ones Enabled by Cooperative Catalysis of Palladium Complex and BrÃ,nsted Acid. Journal of the American Chemical Society, 2016, 138, 14354-14361.	13.7	158
33	Asymmetric Allylic C–H Oxidation for the Synthesis of Chromans. Journal of the American Chemical Society, 2015, 137, 12732-12735.	13.7	124
34	Enantioselective Functionalization of Inactive sp ³ C–H Bonds Remote to Functional Group by Metal/Organo Cooperative Catalysis. Organic Letters, 2015, 17, 5120-5123.	4.6	24
35	Relay Catalytic Cascade Hydrosiloxylation and Asymmetric Hetero-Diels–Alder Reaction. Synthesis, 2014, 46, 1355-1361.	2.3	32
36	Chiral Counteranion Strategy for Asymmetric Oxidative C(sp ³)H/C(sp ³)H Coupling: Enantioselective I±â€Allylation of Aldehydes with Terminal Alkenes. Angewandte Chemie - International Edition, 2014, 53, 12218-12221.	13.8	211

Pu-Sheng Wang

#	Article	IF	CITATIONS
37	Palladium(II)/Lewis Acid Synergistically Catalyzed Allylic C–H Olefination. Organic Letters, 2014, 16, 3332-3335.	4.6	59
38	An Organocatalytic Asymmetric Allylic Alkylation Allows Enantioselective Total Synthesis of Hydroxymetasequirin-A and Metasequirin-B Tetramethyl Ether Diacetates. Organic Letters, 2014, 16, 976-979.	4.6	61
39	Enantioselective Relay Catalytic Cascade Intramolecular Hydrosiloxylation and Mukaiyama Aldol Reaction. Chemistry - A European Journal, 2013, 19, 6234-6238.	3.3	41