
Gleb Vasilyev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5855216/publications.pdf Version: 2024-02-01

CLER VASUVEN

#	Article	IF	CITATIONS
1	Rheological Properties and Electrospinnability of High-Amylose Starch in Formic Acid. Biomacromolecules, 2015, 16, 2529-2536.	2.6	75
2	Processable, Ion-Conducting Hydrogel for Flexible Electronic Devices with Self-Healing Capability. Macromolecules, 2020, 53, 11130-11141.	2.2	63
3	Design of starch-formate compound fibers as encapsulation platform for biotherapeutics. Carbohydrate Polymers, 2017, 158, 68-76.	5.1	62
4	Breaking through the Solid/Liquid Processability Barrier: Thermal Conductivity and Rheology in Hybrid Graphene–Graphite Polymer Composites. ACS Applied Materials & Interfaces, 2017, 9, 7556-7564.	4.0	51
5	Electrospinning polyelectrolyte complexes: pH-responsive fibers. Soft Matter, 2015, 11, 1739-1747.	1.2	49
6	The multiple roles of a dispersant in nanocomposite systems. Composites Science and Technology, 2016, 133, 192-199.	3.8	49
7	Printing Flowers? Custom-Tailored Photonic Cellulose Films with Engineered Surface Topography. Matter, 2019, 1, 988-1000.	5.0	36
8	Tunable pH-Responsive Chitosan-Poly(acrylic acid) Electrospun Fibers. Biomacromolecules, 2018, 19, 588-595.	2.6	34
9	The Role of Electrical Polarity in Electrospinning and on the Mechanical and Structural Properties of As-Spun Fibers. Materials, 2020, 13, 4169.	1.3	32
10	Structure Evolution and Drying Dynamics in Sliding Cholesteric Cellulose Nanocrystals. Journal of Physical Chemistry Letters, 2018, 9, 1845-1851.	2.1	30
11	3D Structure and Processing Methods Direct the Biological Attributes of ECM-Based Cardiac Scaffolds. Scientific Reports, 2019, 9, 5578.	1.6	30
12	Single-step electrospinning of multi walled carbon nanotubes – Poly(3-octylthiophene) hybrid nano-fibers. Polymer, 2016, 86, 15-21.	1.8	28
13	Modulating the Structural Orientation of Nanocellulose Composites through Mechano-Stimuli. ACS Applied Materials & Interfaces, 2019, 11, 40443-40450.	4.0	25
14	Controlled Assembly of Nanocellulose-Stabilized Emulsions with Periodic Liquid Crystal-in-Liquid Crystal Organization. Langmuir, 2018, 34, 13263-13273.	1.6	17
15	Flow induced stability of pluronic hydrogels: Injectable and unencapsulated nucleus pulposus replacement. Acta Biomaterialia, 2019, 96, 295-302.	4.1	16
16	pHâ€Controlled network formation in a mixture of oppositely charged cellulose nanocrystals and poly(allylamine). Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1527-1536.	2.4	14
17	Structural Arrest and Phase Transition in Glassy Nanocellulose Colloids. Langmuir, 2020, 36, 979-985.	1.6	14
18	Relaxation spectra of polymers and phenomena of electrical and hydrophobic recovery: Interplay between bulk and surface properties of polymers. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 198-205.	2.4	13

GLEB VASILYEV

#	Article	lF	CITATIONS
19	Enhanced Electrospinning of Active Organic Fibers by Plasma Treatment on Conjugated Polymer Solutions. ACS Applied Materials & Interfaces, 2020, 12, 26320-26329.	4.0	13
20	Structural Transition in Liquid Crystal Bubbles Generated from Fluidic Nanocellulose Colloids. Angewandte Chemie - International Edition, 2017, 56, 8751-8755.	7.2	12
21	The ternary system amylose-amylopectin-formic acid as precursor for electrospun fibers with tunable mechanical properties. Carbohydrate Polymers, 2019, 214, 186-194.	5.1	12
22	Bioinspired Cationic-Aromatic Copolymer for Strong and Reversible Underwater Adhesion. ACS Applied Materials & Interfaces, 2022, 14, 26287-26294.	4.0	12
23	Estimating the Degree of Polymer Stretching during Electrospinning: An Experimental Imitation Method. Macromolecular Materials and Engineering, 2017, 302, 1600554.	1.7	11
24	Synergistic Effect of Two Organogelators for the Creation of Bio-Based, Shape-Stable Phase-Change Materials. Langmuir, 2020, 36, 15572-15582.	1.6	11
25	Injectable Hydrogels Based on Inter-Polyelectrolyte Interactions between Hyaluronic Acid, Gelatin, and Cationic Cellulose Nanocrystals. Biomacromolecules, 2022, 23, 3222-3234.	2.6	11
26	Pressure losses in flow of viscoelastic polymeric fluids through short channels. Journal of Rheology, 2014, 58, 433-448.	1.3	10
27	Differentiation of Pancreatic Cyst Types by Analysis of Rheological Behavior of Pancreatic Cyst Fluid. Scientific Reports, 2017, 7, 45589.	1.6	10
28	Structural Transition in Liquid Crystal Bubbles Generated from Fluidic Nanocellulose Colloids. Angewandte Chemie, 2017, 129, 8877-8881.	1.6	9
29	Structure and Rheology of Polyelectrolyte Complexes in the Presence of a Hydrogen-Bonded Co-Solvent. Polymers, 2019, 11, 1053.	2.0	9
30	Hybrid Nanocomposites for 3D Optics: Using Interpolymer Complexes with Cellulose Nanocrystals. ACS Applied Materials & Interfaces, 2019, 11, 19324-19330.	4.0	9
31	Solvent-Free Aqueous Dispersions of Block Copolyesters for Electrospinning of Biodegradable Nonwoven Mats for Biomedical Applications. Macromolecular Materials and Engineering, 2014, 299, 1445-1454.	1.7	8
32	Electrostatically crosslinked cellulose nanocrystal and polyelectrolyte complex sponges with pH responsiveness. Carbohydrate Polymers, 2021, 266, 118131.	5.1	7
33	The role of polymer–solvent interactions in polyvinyl-alcohol dispersions of multi-wall carbon nanotubes: from coagulant to dispersant. Soft Matter, 2019, 15, 47-54.	1.2	6
34	Exclusion and Trapping of Carbon Nanostructures in Nonisotropic Suspensions of Cellulose Nanostructures. Journal of Physical Chemistry B, 2019, 123, 3535-3542.	1.2	2
35	Controlledâ€Release LCSTâ€Type Nonwoven Depots via Squeezingâ€Out Thermal Response. Macromolecular Materials and Engineering, 2019, 304, 1800606.	1.7	2
36	Phase Change Material with Gelation Imparting Shape Stability. ACS Omega, 2022, 7, 11887-11902.	1.6	1

#	Article	IF	CITATIONS
37	Micellization of a diâ€block copolymer in ethylene glycol and its utilization for suspension of carbonaceous nanostructures. Journal of Applied Polymer Science, 2018, 135, 46518.	1.3	Ο
38	Printing Flowers? Custom-Tailored Photonic Cellulose Films with Engineered Surface Topography. SSRN Electronic Journal, 0, , .	0.4	0