
Ning Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5854605/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon, 2018, 139, 1126-1135.	5.4	340
2	Highly efficient uranium adsorption by salicylaldoxime/polydopamine graphene oxide nanocomposites. Journal of Materials Chemistry A, 2018, 6, 24676-24685.	5.2	281
3	An overview of lead-free piezoelectric materials and devices. Journal of Materials Chemistry C, 2018, 6, 12446-12467.	2.7	256
4	Allâ€Carbonâ€Electrodeâ€Based Endurable Flexible Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1706777.	7.8	242
5	Significantly Enhanced Uranium Extraction from Seawater with Mass Produced Fully Amidoximated Nanofiber Adsorbent. Advanced Energy Materials, 2018, 8, 1802607.	10.2	219
6	Ultralight, scalable, and high-temperature–resilient ceramic nanofiber sponges. Science Advances, 2017, 3, e1603170.	4.7	207
7	Superhydrophobic/Superoleophilic Polycarbonate/Carbon Nanotubes Porous Monolith for Selective Oil Adsorption from Water. ACS Sustainable Chemistry and Engineering, 2018, 6, 13747-13755.	3.2	198
8	Graphene-based Recyclable Photo-Absorbers for High-Efficiency Seawater Desalination. ACS Applied Materials & Interfaces, 2016, 8, 9194-9199.	4.0	186
9	An Ion rosslinked Supramolecular Hydrogel for Ultrahigh and Fast Uranium Recovery from Seawater. Advanced Materials, 2020, 32, e1906615.	11.1	181
10	Rational Design of Porous Nanofiber Adsorbent by Blow‣pinning with Ultrahigh Uranium Recovery Capacity from Seawater. Advanced Functional Materials, 2019, 29, 1805380.	7.8	180
11	Sunlight Polymerization of Poly(amidoxime) Hydrogel Membrane for Enhanced Uranium Extraction from Seawater. Advanced Science, 2019, 6, 1900085.	5.6	171
12	A Dual‣urface Amidoximated Halloysite Nanotube for High‣fficiency Economical Uranium Extraction from Seawater. Angewandte Chemie - International Edition, 2019, 58, 14979-14985.	7.2	168
13	Triple layered core–shell ZVI@carbon@polyaniline composite enhanced electron utilization in Cr(<scp>vi</scp>) reduction. Journal of Materials Chemistry A, 2018, 6, 11119-11128.	5.2	167
14	An overview of metamaterials and their achievements in wireless power transfer. Journal of Materials Chemistry C, 2018, 6, 2925-2943.	2.7	166
15	Ultrafast and Highly Selective Uranium Extraction from Seawater by Hydrogelâ€ŀike Spidroinâ€based Protein Fiber. Angewandte Chemie - International Edition, 2019, 58, 11785-11790.	7.2	161
16	Crystal Structure Modification Enhanced FeNb ₁₁ O ₂₉ Anodes for Lithiumâ€lon Batteries. ChemElectroChem, 2017, 4, 3171-3180.	1.7	139
17	Photoinduced Enhancement of Uranium Extraction from Seawater by MOF/Black Phosphorus Quantum Dots Heterojunction Anchored on Cellulose Nanofiber Aerogel. Advanced Functional Materials, 2021, 31, 2100106.	7.8	139
18	Selective extraction of uranium from seawater with biofouling-resistant polymeric peptide. Nature Sustainability, 2021, 4, 708-714.	11.5	137

#	Article	IF	CITATIONS
19	Carbon Nanotube Based Inverted Flexible Perovskite Solar Cells with Allâ€Inorganic Charge Contacts. Advanced Functional Materials, 2017, 27, 1703068.	7.8	132
20	DNA nano-pocket for ultra-selective uranyl extraction from seawater. Nature Communications, 2020, 11, 5708.	5.8	132
21	Single-atom Pt-I3 sites on all-inorganic Cs2SnI6 perovskite for efficient photocatalytic hydrogen production. Nature Communications, 2021, 12, 4412.	5.8	128
22	Efficient Bifacial Passivation with Crosslinked Thioctic Acid for Highâ€Performance Methylammonium Lead Iodide Perovskite Solar Cells. Advanced Materials, 2020, 32, e1905661.	11.1	127
23	A Marineâ€Inspired Hybrid Sponge for Highly Efficient Uranium Extraction from Seawater. Advanced Functional Materials, 2019, 29, 1901009.	7.8	125
24	A Bioâ€inspired Nanoâ€pocket Spatial Structure for Targeting Uranyl Capture. Angewandte Chemie - International Edition, 2020, 59, 4262-4268.	7.2	124
25	A Universally Applicable Strategy for Construction of Antiâ€Biofouling Adsorbents for Enhanced Uranium Recovery from Seawater. Advanced Science, 2019, 6, 1900002.	5.6	117
26	Robust flexible poly(amidoxime) porous network membranes for highly efficient uranium extraction from seawater. Nano Energy, 2020, 71, 104629.	8.2	113
27	Photoinduced Multiple Effects to Enhance Uranium Extraction from Natural Seawater by Black Phosphorus Nanosheets. Angewandte Chemie - International Edition, 2020, 59, 1220-1227.	7.2	112
28	Hematite electron-transporting layers for environmentally stable planar perovskite solar cells with enhanced energy conversion and lower hysteresis. Journal of Materials Chemistry A, 2017, 5, 1434-1441.	5.2	95
29	A simple and universal strategy to construct robust and anti-biofouling amidoxime aerogels for enhanced uranium extraction from seawater. Chemical Engineering Journal, 2020, 397, 125337.	6.6	91
30	Highâ€Temperature Particulate Matter Filtration with Resilient Yttriaâ€Stabilized ZrO ₂ Nanofiber Sponge. Small, 2018, 14, e1800258.	5.2	87
31	Supramolecularly Poly(amidoxime)-Loaded Macroporous Resin for Fast Uranium Recovery from Seawater and Uranium-Containing Wastewater. ACS Applied Materials & Interfaces, 2021, 13, 3246-3258.	4.0	85
32	Chemical Fabrication Strategies for Achieving Bioinspired Superhydrophobic Surfaces with Micro and Nanostructures: A Review. Advanced Engineering Materials, 2021, 23, 2001083.	1.6	83
33	Bio-inspired antibacterial cellulose paper–poly(amidoxime) composite hydrogel for highly efficient uranium(<scp>vi</scp>) capture from seawater. Chemical Communications, 2020, 56, 3935-3938.	2.2	80
34	Discrete Iron(III) Oxide Nanoislands for Efficient and Photostable Perovskite Solar Cells. Advanced Functional Materials, 2017, 27, 1702090.	7.8	79
35	Continuously fabricated transparent conductive polycarbonate/carbon nanotube nanocomposite films for switchable thermochromic applications. Journal of Materials Chemistry C, 2018, 6, 8360-8371.	2.7	79
36	Ultrafast Recovery of Uranium from Seawater by <i>Bacillus velezensis</i> Strain UUSâ€1 with Innate Antiâ€Biofouling Activity. Advanced Science, 2019, 6, 1900961.	5.6	77

#	Article	IF	CITATIONS
37	Fabrication of superhydrophobic green surfaces with good self-cleaning, chemical stability and anti-corrosion properties. Journal of Materials Science, 2019, 54, 13006-13016.	1.7	77
38	Ni-doped α-Fe 2 O 3 as electron transporting material for planar heterojunction perovskite solar cells with improved efficiency, reduced hysteresis and ultraviolet stability. Nano Energy, 2017, 38, 193-200.	8.2	75
39	Suppressing Charge Recombination and Ultraviolet Light Degradation of Perovskite Solar Cells Using Silicon Oxide Passivation. ChemElectroChem, 2019, 6, 3167-3174.	1.7	75
40	Synergistic Hematiteâ€Fullerene Electronâ€Extracting Layers for Improved Efficiency and Stability in Perovskite Solar Cells. ChemElectroChem, 2018, 5, 726-731.	1.7	72
41	Boosting Multiple Interfaces by Co-Doped Graphene Quantum Dots for High Efficiency and Durability Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 13941-13949.	4.0	69
42	A trifluoromethyl-grafted ultra-stable fluorescent covalent organic framework for adsorption and detection of pesticides. Journal of Materials Chemistry A, 2020, 8, 25156-25164.	5.2	68
43	Photothermal enhancement of uranium capture from seawater by monolithic MOF-bonded carbon sponge. Chemical Engineering Journal, 2021, 412, 128700.	6.6	61
44	Metal complex hybrid composites based on fullerene-bearing porous polycarbazole for H2, CO2 and CH4 uptake and heterogeneous hydrogenation catalysis. Polymer, 2019, 169, 255-262.	1.8	58
45	Spidroinâ€Inspired, Highâ€Strength, Loofahâ€Shaped Protein Fiber for Capturing Uranium from Seawater. Angewandte Chemie - International Edition, 2020, 59, 15997-16001.	7.2	56
46	A nanoclay enhanced Amidoxime-Functionalized Double-Network hydrogel for fast and massive uranium recovery from seawater. Chemical Engineering Journal, 2021, 422, 130060.	6.6	55
47	Self-sterilizing diblock polycation-enhanced polyamidoxime shape-stable blow-spun nanofibers for high-performance uranium capture from seawater. Chemical Engineering Journal, 2020, 390, 124648.	6.6	54
48	Synergistic Hematite-Fullerene Electron-Extracting Layers for Improved Efficiency and Stability in Perovskite Solar Cells. ChemElectroChem, 2018, 5, 725-725.	1.7	52
49	Vertically Aligned Polyamidoxime/Graphene Oxide Hybrid Sheets' Membrane for Ultrafast and Selective Extraction of Uranium from Seawater. Advanced Functional Materials, 2022, 32, .	7.8	52
50	In Situ Synthesis of Uranylâ€Imprinted Nanocage for Selective Uranium Recovery from Seawater. Angewandte Chemie - International Edition, 2022, 61, .	7.2	51
51	Highly efficient immobilization of environmental uranium contamination with Pseudomonas stutzeri by biosorption, biomineralization, and bioreduction. Journal of Hazardous Materials, 2022, 424, 127758.	6.5	51
52	Halogen hydrogen-bonded organic framework (XHOF) constructed by singlet open-shell diradical for efficient photoreduction of U(VI). Nature Communications, 2022, 13, 1389.	5.8	51
53	Mechanical Stability of PDMS-Based Micro/Nanotextured Flexible Superhydrophobic Surfaces under External Loading. ACS Applied Materials & Interfaces, 2019, 11, 48583-48593.	4.0	50
54	Charge balanced anti-adhesive polyacrylamidoxime hydrogel membrane for enhancing uranium extraction from seawater. Chemical Engineering Journal, 2021, 421, 127878.	6.6	48

#	Article	IF	CITATIONS
55	Antibiofouling Ultrathin Poly(amidoxime) Membrane for Enhanced U(VI) Recovery from Wastewater and Seawater. ACS Applied Materials & amp; Interfaces, 2021, 13, 21272-21285.	4.0	47
56	Optimizing nanocarbon shell in zero-valent iron nanoparticles for improved electron utilization in Cr(VI) reduction. Chemosphere, 2020, 242, 125235.	4.2	42
57	Amidoxime Groupâ€Anchored Single Cobalt Atoms for Antiâ€Biofouling during Uranium Extraction from Seawater. Advanced Science, 2022, 9, e2105008.	5.6	41
58	A Dual‣urface Amidoximated Halloysite Nanotube for Highâ€Efficiency Economical Uranium Extraction from Seawater. Angewandte Chemie, 2019, 131, 15121-15127.	1.6	39
59	Facile one-step fabrication of CdS _{0.12} Se _{0.88} quantum dots with a ZnSe/ZnS-passivation layer for highly efficient quantum dot sensitized solar cells. Journal of Materials Chemistry A, 2018, 6, 9866-9873.	5.2	38
60	Ultrafast and Highly Selective Uranium Extraction from Seawater by Hydrogelâ€like Spidroinâ€based Protein Fiber. Angewandte Chemie, 2019, 131, 11911-11916.	1.6	38
61	Eco-Friendly and Safe Method of Fabricating Superhydrophobic Surfaces on Stainless Steel Substrates. Journal of Physical Chemistry C, 2019, 123, 25738-25746.	1.5	37
62	Cuttlefish ink loaded polyamidoxime adsorbent with excellent photothermal conversion and antibacterial activity for highly efficient uranium capture from natural seawater. Journal of Hazardous Materials, 2022, 433, 128789.	6.5	36
63	Synergistic carbon nanotube aerogel – Pt nanocomposites toward enhanced energy conversion in dye-sensitized solar cells. Journal of Materials Chemistry A, 2016, 4, 3238-3244.	5.2	35
64	Accelerated Chemical Thermodynamics of Uranium Extraction from Seawater by Plantâ€Mimetic Transpiration. Advanced Science, 2021, 8, e2102250.	5.6	35
65	A poly(amidoxime)-modified MOF macroporous membrane for high-efficient uranium extraction from seawater. E-Polymers, 2022, 22, 399-410.	1.3	35
66	Guanidinium-based ionic covalent organic frameworks for capture of uranyl tricarbonate. Advanced Composites and Hybrid Materials, 2022, 5, 184-194.	9.9	34
67	Interlayer spacing adjusted zirconium phosphate with 2D ion channels for highly efficient removal of uranium contamination in radioactive effluent. Chemical Engineering Journal, 2022, 429, 132265.	6.6	34
68	Goethite Quantum Dots as Multifunctional Additives for Highly Efficient and Stable Perovskite Solar Cells. Small, 2019, 15, e1904372.	5.2	32
69	Progress in fabrication and applications of micro/nanostructured superhydrophobic surfaces. Surface Innovations, 2022, 10, 89-110.	1.4	31
70	Rapid recovery of uranium with magnetic-single-molecular amidoxime adsorbent. Separation and Purification Technology, 2022, 287, 120524.	3.9	31
71	SnSe2 nanocrystals coupled with hierarchical porous carbon microspheres for long-life sodium ion battery anode. Science China Materials, 2020, 63, 483-491.	3.5	30
72	Mussel-inspired dual-crosslinked polyamidoxime photothermal hydrogel with enhanced mechanical strength for highly efficient and selective uranium extraction from seawater. Chemical Engineering Journal, 2022, 430, 133182.	6.6	30

#	Article	IF	CITATIONS
73	Facile fabrication of amphiphobic surfaces on copper substrates with a mixed modified solution. RSC Advances, 2019, 9, 17366-17372.	1.7	28
74	Flexible Metal/Polymer Composite Films Embedded with Silver Nanowires as a Stretchable and Conductive Strain Sensor for Human Motion Monitoring. Micromachines, 2019, 10, 372.	1.4	28
75	Microcapsuleâ€Based Visualization Smart Sensors for Damage Detection: Principles and Applications. Advanced Materials Technologies, 2020, 5, 1900832.	3.0	28
76	Mixed-linker strategy toward enhanced photoreduction-assisted uranium recovery from wastewater and seawater. Chemical Engineering Journal, 2022, 446, 137264.	6.6	28
77	Efficient and Selective Methane Borylation Through Pore Size Tuning of Hybrid Porous Organicâ€Polymerâ€Based Iridium Catalysts. Angewandte Chemie - International Edition, 2019, 58, 10671-10676.	7.2	27
78	Kelp inspired bio-hydrogel with high antibiofouling activity and super-toughness for ultrafast uranium extraction from seawater. Chemical Engineering Journal, 2022, 430, 133121.	6.6	27
79	Atomic Chromium Coordinated Graphitic Carbon Nitride for Bioinspired Antibiofouling in Seawater. Advanced Science, 2022, 9, e2105346.	5.6	27
80	Photothermalâ€Amplified Single Atom Nanozyme for Biofouling Control in Seawater. Advanced Functional Materials, 2022, 32, .	7.8	27
81	High-strength and anti-biofouling nanofiber membranes for enhanced uranium recovery from seawater and wastewater. Journal of Hazardous Materials, 2022, 436, 128983.	6.5	26
82	Conjugating hyaluronic acid with porous biomass to construct anti-adhesive sponges for rapid uranium extraction from seawater. Chemical Engineering Journal, 2021, 420, 130382.	6.6	25
83	In-situ grown bilayer MOF from robust wood aerogel with aligned microchannel arrays toward selective extraction of uranium from seawater. Chemical Engineering Journal, 2022, 433, 134346.	6.6	25
84	Advanced bamboo composite materials with high-efficiency and long-term anti-microbial fouling performance. Advanced Composites and Hybrid Materials, 2022, 5, 864-871.	9.9	24
85	Macroporous hydrogel membrane by cooperative reaming for highly efficient uranium extraction from seawater. Separation and Purification Technology, 2022, 289, 120823.	3.9	24
86	A wood-mimetic porous MXene/gelatin hydrogel for electric field/sunlight bi-enhanced uranium adsorption. E-Polymers, 2022, 22, 468-477.	1.3	24
87	Highly efficient extraction of uranium from seawater by natural marine crab carapace. Chemical Engineering Journal, 2022, 430, 133038.	6.6	23
88	Enhanced Electron Collection in Perovskite Solar Cells Employing Thermoelectric NaCo ₂ O ₄ /TiO ₂ Coaxial Nanofibers. Small, 2016, 12, 5146-5152.	5.2	22
89	Stabilizing Ultrasmall Ceriaâ€Cluster Nanozyme for Antibacterial and Antibiofouling Applications. Small, 2022, 18, e2107401.	5.2	22
90	Flexible films with wrinkled micro-nano hierarchical structures having stable superhydrophobicity under external loading. Journal of Materials Science, 2020, 55, 9623-9637.	1.7	20

#	Article	IF	CITATIONS
91	A Smart Design Strategy for Superâ€Elastic Hydrogel with Longâ€Term Moisture, Extreme Temperature Resistance, and Nonâ€Flammability. Advanced Science, 2021, 8, e2100320.	5.6	20
92	Fluorinated Black Phosphorene Nanosheets with Robust Ambient Stability for Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, 2106779.	7.8	20
93	Transition Metal Engineering of Molybdenum Disulfide Nanozyme for Biomimicking Anti-Biofouling in Seawater. ACS Applied Materials & Interfaces, 2022, 14, 14218-14225.	4.0	18
94	Ultra-fast and stable extraction of Li metal from seawater. Chemical Communications, 2020, 56, 1577-1580.	2.2	17
95	Micro-Nano Hierarchical Dendritic Structures for Droplet Curve Manipulation: Implications for Microfluidic Devices. ACS Applied Nano Materials, 2020, 3, 6524-6530.	2.4	17
96	Ultrasensitive Detection of Aqueous Uranyl Based on Uranylâ€īriggered Protein Photocleavage. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16
97	A Review on Applications of Superhydrophobic Materials in Civil Engineering. Advanced Engineering Materials, 2022, 24, .	1.6	15
98	Patterned Metal/Polymer Strain Sensor with Good Flexibility, Mechanical Stability and Repeatability for Human Motion Detection. Micromachines, 2019, 10, 472.	1.4	14
99	Highly efficient charge collection in dye-sensitized solar cells based on nanocomposite photoanode filled with indium-tin oxide interlayer. Advanced Composites and Hybrid Materials, 2018, 1, 356-363.	9.9	12
100	Angle-dependent structural colors in a nanoscale-grating photonic crystal fabricated by reverse nanoimprint technology. Beilstein Journal of Nanotechnology, 2019, 10, 1211-1216.	1.5	12
101	Photoinduced Multiple Effects to Enhance Uranium Extraction from Natural Seawater by Black Phosphorus Nanosheets. Angewandte Chemie, 2020, 132, 1236-1243.	1.6	12
102	A Bioâ€inspired Nanoâ€pocket Spatial Structure for Targeting Uranyl Capture. Angewandte Chemie, 2020, 132, 4292-4298.	1.6	12
103	In Situ Synthesis of Uranylâ€Imprinted Nanocage for Selective Uranium Recovery from Seawater. Angewandte Chemie, 2022, 134, .	1.6	11
104	Defect-engineered metal-organic framework with enhanced photoreduction activity toward uranium extraction from seawater. Cell Reports Physical Science, 2022, 3, 100892.	2.8	11
105	Single-atom tungsten engineering of MOFs with biomimetic antibiofilm activity toward robust uranium extraction from seawater. Chemical Engineering Journal, 2022, 431, 133483.	6.6	10
106	Room temperature synthesis of defective cerium oxide for efficient marine anti-biofouling. Advanced Composites and Hybrid Materials, 2022, 5, 2163-2170.	9.9	8
107	Remarkably Enhanced CO2 Uptake and Uranium Extraction by Functionalization of Cyano-bearing Conjugated Porous Polycarbazoles. Engineered Science, 2019, , .	1.2	7
108	Structural and Componential Engineering of Co ₂ P&CoP@N–C Nanoarrays for Energy-Efficient Hydrogen Production from Water Electrolysis. ACS Applied Materials & Interfaces, 2021, 13, 56064-56072.	4.0	7

#	Article	IF	CITATIONS
109	Uranium Extraction: A Marineâ€Inspired Hybrid Sponge for Highly Efficient Uranium Extraction from Seawater (Adv. Funct. Mater. 32/2019). Advanced Functional Materials, 2019, 29, 1970219.	7.8	6
110	Electrical Signal Reporter, Pore-Forming Protein, for Rapid, Miniaturized, and Universal Identification of Microorganisms. Analytical Chemistry, 2018, 90, 9853-9858.	3.2	5
111	Functionalization and Fabrication of Soluble Polymers of Intrinsic Microporosity for CO2 Transformation and Uranium Extraction. Engineered Science, 2018, , .	1.2	5
112	Patterned Metal/Polymer Composite Film with Good Mechanical Stability and Repeatability for Flexible Electronic Devices Using Nanoimprint Technology. Micromachines, 2019, 10, 651.	1.4	4
113	Efficient and Selective Methane Borylation Through Pore Size Tuning of Hybrid Porous Organicâ€Polymerâ€Based Iridium Catalysts. Angewandte Chemie, 2019, 131, 10781-10786.	1.6	4
114	Perovskite Solar Cells: All arbonâ€Electrodeâ€Based Endurable Flexible Perovskite Solar Cells (Adv.) Tj ETQq0	0 0.rgBT /	Ovgrlock 10 T
115	Ultra-flexible flame-retardant wood composites with resistance to extreme temperatures and mildew.	2.8	3

110	Cell Reports Physical Science, 2022, 3, 100732.	2.0	J
116	Spidroinâ€Inspired, Highâ€Strength, Loofahâ€Shaped Protein Fiber for Capturing Uranium from Seawater. Angewandte Chemie, 2020, 132, 16131-16135.	1.6	2
117	Study of mechanical properties and enhancing auxetic mechanism of composite auxetic structures. Engineering Reports, 2021, 3, e12436.	0.9	2
118	Highly efficient and stable Li extraction device by coupling Li4Ti5O12 electrode and matching perfluoro electrolyte. Journal of Alloys and Compounds, 2021, 869, 159402.	2.8	2
119	Low-Temperature synthesis of FeOOH Quantum Dots as Promising Electron-Transporting Layers for High-Performance Planar Perovskite Solar Cells. IOP Conference Series: Earth and Environmental Science, 0, 585, 012010.	0.2	2
120	Wetting stability of flexible superamphiphobic surfaces under stretching loading. Surface Innovations, 2023, 11, 121-131.	1.4	2
121	Controllable preparation and functionally graded programming of carbon aerogel. Pigment and Resin Technology, 2020, ahead-of-print, .	0.5	0
122	Frontispiz: A Bioâ€inspired Nanoâ€pocket Spatial Structure for Targeting Uranyl Capture. Angewandte Chemie, 2020, 132, .	1.6	0
123	Frontispiece: A Bioâ€inspired Nanoâ€pocket Spatial Structure for Targeting Uranyl Capture. Angewandte Chemie - International Edition, 2020, 59, .	7.2	0
124	Ultrasensitive Detection of Aqueous Uranyl Based on Uranylâ€Triggered Protein Photocleavage. Angewandte Chemie, 0, , .	1.6	0