
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5854541/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Drawing structured plasmonic field with on-chip metalens. Nanophotonics, 2022, 11, 1969-1976.	6.0	6
2	Single-particle trapping and dynamic manipulation with holographic optical surface-wave tweezers. Photonics Research, 2022, 10, 166.	7.0	11
3	Labelâ€free identification of human glioma xenograft of mouse brain with quantitative ultraviolet photoacoustic histology imaging. Journal of Biophotonics, 2022, 15, e202100329.	2.3	5
4	Active Modulation of Graphene Nearâ€Infrared Electroabsorption Employing Borophene Plasmons in a Wide Waveband. Advanced Optical Materials, 2022, 10, .	7.3	13
5	Grapheneâ€Based Optoâ€Thermoelectric Tweezers. Advanced Materials, 2022, 34, e2107691.	21.0	20
6	Energy flow inversion in an intensity-invariant focusing field. Optics Letters, 2022, 47, 1494.	3.3	8
7	Deep Learning-Enabled Orbital Angular Momentum-Based Information Encryption Transmission. ACS Photonics, 2022, 9, 820-829.	6.6	32
8	Detecting cylindrical vector beams with an on-chip plasmonic spin-Hall metalens. Optics Express, 2022, 30, 10758.	3.4	3
9	Time-varying orbital angular momentum in tight focusing of ultrafast pulses. Optics Express, 2022, 30, 13416.	3.4	6
10	In situ intracellular Raman spectroscopic detection with graphene-based thermoelectric optical tweezers. Sensors and Actuators B: Chemical, 2022, 361, 131722.	7.8	5
11	External field-strengthened Ostwald nanowelding. Nano Research, 2022, 15, 4525-4535.	10.4	4
12	Controllable transportation of microparticles along structured waveguides by the plasmonic spin-hall effect. Optics Express, 2022, 30, 16094.	3.4	1
13	Data transmission with up to 100 orbital angular momentum modes via commercial multi-mode fiber and parallel neural networks. Optics Express, 2022, 30, 23149.	3.4	9
14	Optical singularity assisted method for accurate parameter detection of step-shaped nanostructure in coherent Fourier scatterometry. Optics Express, 2022, 30, 29287.	3.4	1
15	Few-layer metamaterials for spontaneous emission enhancement. Optics Letters, 2021, 46, 190.	3.3	10
16	Controllable hybridization between localized and delocalized anisotropic borophene plasmons in the near-infrared region. Optics Letters, 2021, 46, 725.	3.3	17
17	Controllable transport of nanoparticles along waveguides by spin-orbit coupling of light. Optics Express, 2021, 29, 6282.	3.4	9
18	Few-layer metamaterials for spontaneous emission enhancement: publisher's note. Optics Letters, 2021, 46, 1583.	3.3	0

#	Article	IF	CITATIONS
19	Nonlinear modulation on optical trapping in a plasmonic bowtie structure. Optics Express, 2021, 29, 11664.	3.4	5
20	Plasmonic tweezers: for nanoscale optical trapping and beyond. Light: Science and Applications, 2021, 10, 59.	16.6	171
21	A Phase-Shifted Surface Plasmon Resonance Sensor for Simultaneous Photoacoustic Volumetric Imaging and Spectroscopic Analysis. ACS Sensors, 2021, 6, 1840-1848.	7.8	17
22	Determination of steep sidewall angle using polarization-sensitive asymmetric scattering. Measurement Science and Technology, 2021, 32, 085201.	2.6	1
23	Generation of vector beams array with a single spatial light modulator. Optics Communications, 2021, 490, 126915.	2.1	18
24	Active tuning of longitudinal strong coupling between anisotropic borophene plasmons and Bloch surface waves. Optics Express, 2021, 29, 27750.	3.4	14
25	Nonlinearity-modulated single molecule trapping and Raman scattering analysis. Optics Express, 2021, 29, 32285.	3.4	1
26	Broadband surface plasmon resonance sensor for fast spectroscopic photoacoustic microscopy. Photoacoustics, 2021, 24, 100305.	7.8	7
27	Magnetic polaritons assisted effective excitation of multi-order anisotropic borophene surface plasmons in the infrared region. Results in Physics, 2021, 29, 104780.	4.1	9
28	Effective Transmission Modulation at Telecommunication Wavelengths through Continuous Metal Films Using Coupling between Borophene Plasmons and Magnetic Polaritons. Advanced Optical Materials, 2021, 9, 2001809.	7.3	18
29	Plasmonic and Graphene-Functionalized High-Performance Broadband Quasi-Two-Dimensional Perovskite Hybrid Photodetectors. ACS Applied Materials & Interfaces, 2021, 13, 61496-61505.	8.0	11
30	Generalized vector diffraction model for tight focusing of light with arbitrary polarization state. Optik, 2020, 201, 163528.	2.9	1
31	Trapping metallic particles using focused Bloch surface waves. Nanoscale, 2020, 12, 1688-1696.	5.6	23
32	Research progress of femtosecond surface plasmon polariton*. Chinese Physics B, 2020, 29, 027302.	1.4	14
33	On-chip plasmonic spin-Hall nanograting for simultaneously detecting phase and polarization singularities. Light: Science and Applications, 2020, 9, 95.	16.6	65
34	Theoretical and experimental studies on broadband photoacoustic response of surface plasmon sensing. Applied Physics Letters, 2020, 116, 243504.	3.3	8
35	Optical Trapping with Focused Surface Waves. Annalen Der Physik, 2020, 532, 1900497.	2.4	11
36	Graphene-Based Confocal Refractive Index Microscopy for Label-Free Differentiation of Living Epithelial and Mesenchymal Cells. ACS Sensors, 2020, 5, 510-518.	7.8	6

#	Article	IF	CITATIONS
37	Lateral forces on particles induced by magnetic spin-orbit coupling. Optics Express, 2020, 28, 13116.	3.4	6
38	Facilitated tip-enhanced Raman scattering by focused gap-plasmon hybridization. Photonics Research, 2020, 8, 103.	7.0	11
39	Controllable propagation and transformation of chiral intensity field at focus. Optics Letters, 2020, 45, 4823.	3.3	10
40	Extraordinary spin-orbit interaction in the plasmonic lens with negative index material. Optics Express, 2020, 28, 26543.	3.4	3
41	Isometrically Resolved Photoacoustic Microscopy Based on Broadband Surface Plasmon Resonance Ultrasound Sensing. ACS Applied Materials & Interfaces, 2019, 11, 27378-27385.	8.0	17
42	Enhancement effect of Au claddings in tip enhanced Raman spectroscopy. Optik, 2019, 199, 163326.	2.9	2
43	Measuring phase and polarization singularities of light using spin-multiplexing metasurfaces. Nanoscale, 2019, 11, 18303-18310.	5.6	22
44	Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light: Science and Applications, 2019, 8, 90.	16.6	1,151
45	In Vivo Reflection-Mode Photoacoustic Microscopy Enhanced by Plasmonic Sensing with an Acoustic Cavity. ACS Sensors, 2019, 4, 2697-2705.	7.8	7
46	Tight focusing induced non-uniform polarization change in reflection for arbitrarily polarized incident light. Optics Communications, 2019, 443, 26-33.	2.1	1
47	Tuning of longitudinal plasmonic coupling in graphene nanoribbon arrays/sheet hybrid structures at mid-infrared frequencies. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 697.	2.1	7
48	Optimization of photonic nanojets generated by multilayer microcylinders with a genetic algorithm. Optics Express, 2019, 27, 1310.	3.4	50
49	Spin-orbit coupling controlled near-field propagation and focusing of Bloch surface wave. Optics Express, 2019, 27, 27536.	3.4	12
50	Multifunctional geometric phase optical element for high-efficiency full Stokes imaging polarimetry. Photonics Research, 2019, 7, 1066.	7.0	21
51	Title is missing!. Chinese Optics Letters, 2019, 17, 062402.	2.9	5
52	Reflection-mode broadband photoacoustic microscopy based on surface plasmon resonance. , 2019, , .		0
53	Refractive index sensing and imaging based on polarization-sensitive graphene. Optics Express, 2019, 27, 29273.	3.4	4
54	Broadband graphene-based photoacoustic microscopy with high sensitivity. Nanoscale, 2018, 10, 8606-8614.	5.6	24

#	Article	IF	CITATIONS
55	Sensitive Gap-Enhanced Raman Spectroscopy with a Perfect Radially Polarized Beam. Plasmonics, 2018, 13, 991-996.	3.4	12
56	On-chip spin-controlled orbital angular momentum directional coupling. Journal Physics D: Applied Physics, 2018, 51, 014002.	2.8	6
57	Enhancing plasmonic trapping with a perfect radially polarized beam. Photonics Research, 2018, 6, 847.	7.0	28
58	Plasmonic Manipulation of Targeted Metallic Particles by Polarization-Sensitive Metalens. ACS Photonics, 2018, 5, 2945-2950.	6.6	17
59	Ultra-broadband on-chip twisted light emitter for optical communications. Light: Science and Applications, 2018, 7, 18001-18001.	16.6	136
60	Wide-field in situ multiplexed Raman imaging with superresolution. Photonics Research, 2018, 6, 530.	7.0	7
61	Switching photonic nanostructures between cloaking and superscattering regimes using phase-change materials [Invited]. Optical Materials Express, 2018, 8, 1672.	3.0	17
62	All-optical manipulation of micrometer-sized metallic particles. Photonics Research, 2018, 6, 66.	7.0	34
63	Spin-Dependent Optical Geometric Transformation for Cylindrical Vector Beam Multiplexing Communication. ACS Photonics, 2018, 5, 3478-3484.	6.6	58
64	Nonlinearity-Induced Multiplexed Optical Trapping and Manipulation with Femtosecond Vector Beams. Nano Letters, 2018, 18, 5538-5543.	9.1	82
65	Using phase-change materials to switch the direction of reflectionless light propagation in non-PT-symmetric structures. , 2018, , .		1
66	Manipulating orbital angular momentum of light with tailored in-plane polarization states. Scientific Reports, 2017, 7, 41001.	3.3	20
67	Compact Slow-Light Enhaced Plasmonic Waveguide Refractive Index Sensors. International Journal of Behavioral and Consultation Therapy, 2017, , 77-108.	0.4	0
68	Generating Arbitrary Order Cylindrical Vector Beams With Inherent Transform Mechanism. IEEE Photonics Journal, 2017, 9, 1-8.	2.0	16
69	Focal and optical trapping behaviors of radially polarized vortex beam with broken axial symmetry. AIP Advances, 2017, 7, 065109.	1.3	9
70	Polarization-controlled gap-mode surface-enhanced Raman scattering with a single nanoparticle. Journal Physics D: Applied Physics, 2017, 50, 255302.	2.8	8
71	Dynamic plasmonic nano-traps for single molecule surface-enhanced Raman scattering. Nanoscale, 2017, 9, 10694-10700.	5.6	26
72	Unidirectional reflectionless light propagation at exceptional points. Nanophotonics, 2017, 6, 977-996.	6.0	89

#	Article	IF	CITATIONS
73	Microscopic surface plasmon enhanced raman spectral imaging. Optics Communications, 2017, 392, 64-67.	2.1	9
74	Meta-Holograms with Full Parameter Control of Wavefront over a 1000 nm Bandwidth. ACS Photonics, 2017, 4, 2158-2164.	6.6	42
75	Refractive index mapping of single cells with a graphene-based optical sensor. Sensors and Actuators B: Chemical, 2017, 242, 41-46.	7.8	29
76	Switching of the direction of reflectionless light propagation at exceptional points in non-PT-symmetric structures using phase-change materials. Optics Express, 2017, 25, 27283.	3.4	26
77	Flexible generation of femtosecond cylindrical vector beams (Invited Paper). Chinese Optics Letters, 2017, 15, 030007-30010.	2.9	9
78	Research progress of plasmonic structure illumination microscopy. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 148701.	0.5	0
79	Novel Plasmonic Microscopy: Principle and Applications. , 2017, , 429-459.		Ο
80	Non-PT-symmetric plasmonic waveguide-cavity systems: unidirectional reflectionlessness and broadband near total light absorption. , 2017, , .		0
81	Broadband near total light absorption in non-PT-symmetric waveguide-cavity systems. Optics Express, 2016, 24, 22219.	3.4	47
82	Improving the luminescence enhancement of hybrid Au nanoparticle-monolayer MoS_2 by focusing radially-polarized beams. Optics Express, 2016, 24, 27554.	3.4	10
83	Perfect optical vortex enhanced surface plasmon excitation for plasmonic structured illumination microscopy imaging. Applied Physics Letters, 2016, 108, .	3.3	81
84	Design of Compact Mach–Zehnder Interferometer-Based Slow-Light-Enhanced Plasmonic Waveguide Sensors. Journal of Lightwave Technology, 2016, 34, 2796-2803.	4.6	12
85	An optical detection method for analyzing the cellular response to paclitaxel at the single cell level. Analytical Methods, 2016, 8, 3698-3703.	2.7	3
86	In-plane trapping and manipulation of ZnO nanowires by a hybrid plasmonic field. Nanoscale, 2016, 8, 9756-9763.	5.6	18
87	Plasmonic nanoâ€slits assisted polarization selective detour phase metaâ€hologram. Laser and Photonics Reviews, 2016, 10, 978-985.	8.7	60
88	Shaping perfect optical vortex with amplitude modulated using a digital micro-mirror device. Optics Communications, 2016, 381, 292-295.	2.1	21
89	Sub-wavelength sized transversely polarized optical needle with exceptionally suppressed side-lobes. Optics Express, 2016, 24, 874.	3.4	43
90	Generation and detection of broadband multi-channel orbital angular momentum by micrometer-scale meta-reflectarray. Optics Express, 2016, 24, 212.	3.4	32

#	Article	IF	CITATIONS
91	Novel Plasmonic Microscopy: Principle and Applications. , 2016, , 1-31.		Ο
92	In-plane trapping and manipulation of ZnO nanowires on a metallic surface. , 2016, , .		0
93	Dynamic plasmonic trapping and manipulation of nanoparticles and nanowires. , 2016, , .		0
94	Unidirectional reflectionless propagation in plasmonic waveguide-cavity systems at exceptional points. Optics Express, 2015, 23, 29882.	3.4	79
95	A Plasmonic Spanner for Metal Particle Manipulation. Scientific Reports, 2015, 5, 15446.	3.3	53
96	Simulating photoacoustic waves produced by individual biological particles with spheroidal wave functions. Scientific Reports, 2015, 5, 14801.	3.3	12
97	Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light: Science and Applications, 2015, 4, e257-e257.	16.6	426
98	Properties of surface plasmon polaritons excited by generalized cylindrical vector beams. Applied Physics B: Lasers and Optics, 2015, 119, 305-311.	2.2	11
99	A label-free approach to kinetic analysis and high multiplex detection of targeted drugs with phase surface plasmon resonance imaging. Analytical Methods, 2015, 7, 1738-1744.	2.7	4
100	Plasmonic Cross-Talking in Integrated Metallic Nanoslits. Plasmonics, 2015, 10, 1275-1281.	3.4	3
101	Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors. Optics Express, 2015, 23, 14922.	3.4	63
102	Plasmonic Hybridization Induced Trapping and Manipulation of Metallic Nano-objects. , 2015, , .		0
103	Investigation of phase SPR biosensor for efficient targeted drug screening with high sensitivity and stability. Sensors and Actuators B: Chemical, 2015, 209, 313-322.	7.8	25
104	Engineered Tumor Cell Apoptosis Monitoring Method Based on Dynamic Laser Tweezers. BioMed Research International, 2014, 2014, 1-6.	1.9	2
105	Dynamic plasmonic beam shaping by vector beams with arbitrary locally linear polarization states. Applied Physics Letters, 2014, 105, .	3.3	26
106	Phase-stepping technique for highly sensitive microscopic surface plasmon resonance biosensor. Applied Optics, 2014, 53, 836.	1.8	10
107	Tight focusing of quasi-cylindrically polarized beams. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, 373.	1.5	17
108	Optimized aperiodic highly directional narrowband infrared emitters. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 1316.	2.1	28

#	Article	IF	CITATIONS
109	Plasmonic Hybridization Induced Trapping and Manipulation of a Single Au Nanowire on a Metallic Surface. Nano Letters, 2014, 14, 6430-6436.	9.1	64
110	Dynamic cosine-Gauss plasmonic beam through phase control. Optics Express, 2014, 22, 13541.	3.4	17
111	Analytic theory of photoacoustic wave generation from a spheroidal droplet. Optics Express, 2014, 22, 19953.	3.4	10
112	Study on Novel Nano-Heating Source Based on Plasmonic Nanotweezers. Guangxue Xuebao/Acta Optica Sinica, 2014, 34, 0924001.	1.2	0
113	Arbitrary vector beams with selective polarization states patterned by tailored polarizing films. Laser Physics, 2013, 23, 105001.	1.2	29
114	Dynamic optical tweezers based assay for monitoring early drug resistance. Laser Physics Letters, 2013, 10, 065604.	1.4	7
115	Focused plasmonic trapping of metallic particles. Nature Communications, 2013, 4, 2891.	12.8	319
116	Experimental approach to the microscopic phase-sensitive surface plasmon resonance biosensor. Applied Physics Letters, 2013, 102, .	3.3	34
117	Singular diffraction-free surface plasmon beams generated by overlapping phase-shifted sources. Optics Letters, 2013, 38, 1182.	3.3	16
118	Theoretical and Experimental Study of Surface Plasmon Radiation Force on Micrometer-Sized Spheres. Plasmonics, 2013, 8, 637-643.	3.4	16
119	Plasmonic petal-shaped beam for microscopic phase-sensitive SPR biosensor with ultrahigh sensitivity. Optics Letters, 2013, 38, 4770.	3.3	15
120	Self-imaging generation of plasmonic void arrays. Optics Letters, 2013, 38, 2783.	3.3	14
121	Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering. Scientific Reports, 2013, 3, 3064.	3.3	47
122	Sidelobe-modulated optical vortices for free-space communication. Optics Letters, 2013, 38, 588.	3.3	44
123	Dynamic plasmonic tweezers enabled single-particle-film-system gap-mode Surface-enhanced Raman scattering. Applied Physics Letters, 2013, 103, .	3.3	27
124	Polarization and amplitude hybrid modulation of longitudinally polarized subwavelength-sized optical needle. Chinese Optics Letters, 2013, 11, 052601-52604.	2.9	3
125	Self-healing optical pillar array. Optics Letters, 2012, 37, 3540.	3.3	17
126	Compact slit-based couplers for metal-dielectric-metal plasmonic waveguides. Optics Express, 2012, 20, 22233.	3.4	30

#	Article	IF	CITATIONS
127	Optically stitched arbitrary fan-sectors with selective polarization states for dynamic manipulation of surface plasmon polaritons. Optics Express, 2012, 20, 24748.	3.4	7
128	Visualizing orbital angular momentum of plasmonic vortices. Optics Letters, 2012, 37, 4627.	3.3	70
129	Nanoscale Plasmonic Devices Based on Metal-Dielectric-Metal Stub Resonators. International Journal of Optics, 2012, 2012, 1-13.	1.4	24
130	Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency. Applied Physics Letters, 2011, 99, .	3.3	164
131	Microcavity enhanced optical absorption in subwavelength slits. Optics Express, 2011, 19, 26850.	3.4	19
132	All-optical nonlinear switches based on Y-shaped plasmonic waveguides. Proceedings of SPIE, 2010, , .	0.8	0
133	Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings. Applied Physics Letters, 2010, 96, .	3.3	214
134	Theoretical investigation of fabrication-related disorders on the properties of subwavelength metal-dielectric-metal plasmonic waveguides. Optics Express, 2010, 18, 20939.	3.4	22
135	Guided subwavelength slow-light mode supported by a plasmonic waveguide system. Optics Letters, 2010, 35, 4184.	3.3	62
136	Absorption switches in metal-dielectric-metal plasmonic waveguides. Optics Express, 2009, 17, 10757.	3.4	192
137	Optimization of quantum interferometric metrological sensors in the presence of photon loss. Physical Review A, 2009, 80, .	2.5	74
138	All-optical absorption switches in subwavelength metal-dielectricmetal plasmonic waveguides. , 2009, , .		4
139	Beam focusing by metallic nano-slit array containing nonlinear material. Applied Physics B: Lasers and Optics, 2008, 90, 97-99.	2.2	33
140	All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials. Optics Letters, 2008, 33, 869.	3.3	210
141	Modulation of Splitting Beam Angle with Metal–Nonlinear Optical Material–Metal (M-NL-M) Array Structure. Chinese Physics Letters, 2008, 25, 4375-4377.	3.3	3
142	Refraction Light Control by Constructing Output Interface Topography of Metal Waveguide Arrays. Chinese Physics Letters, 2008, 25, 2104-2106.	3.3	1
143	Numerical Investigation of Surface Plasmons Associated Subwavelength Optical Single-Pass Effect. Chinese Physics Letters, 2007, 24, 2922-2925.	3.3	3
144	Extraordinary Transmission through Metallic Grating with Subwavelength Slits for S-Polarization Illumination. Chinese Physics Letters, 2007, 24, 1600-1602.	3.3	6

#	Article	IF	CITATIONS
145	Beam manipulating by metallic nano-optic lens containing nonlinear media. Optics Express, 2007, 15, 9541.	3.4	89
146	Optical bistability in subwavelength metallic grating coated by nonlinear material. Optics Express, 2007, 15, 12368.	3.4	38
147	Investigation of enhanced and suppressed optical transmission through a cupped surface metallic grating structure. Optics Express, 2006, 14, 5657.	3.4	5
148	Polarization properties of subwavelength metallic gratings in visible light band. Applied Physics B: Lasers and Optics, 2006, 85, 139-143.	2.2	24