Ruijie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5854519/publications.pdf

Version: 2024-02-01

52	4,467	35	52
papers	citations	h-index	g-index
52	52	52	2044
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Allâ€polymer solar cells with over 16% efficiency and enhanced stability enabled by compatible solvent and polymer additives. Aggregate, 2022, 3, e58.	9.9	85
2	Airâ€Processed Efficient Organic Solar Cells from Aromatic Hydrocarbon Solvent without Solvent Additive or Postâ€Treatment: Insights into Solvent Effect on Morphology. Energy and Environmental Materials, 2022, 5, 977-985.	12.8	59
3	Ester side chains engineered quinoxaline based D-A copolymers for high-efficiency all-polymer solar cells. Chemical Engineering Journal, 2022, 429, 132551.	12.7	16
4	Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors. Matter, 2022, 5, 725-734.	10.0	145
5	Influence of Fluorine Substitution on the Photovoltaic Performance of Wide Band Gap Polymer Donors for Polymer Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 5740-5749.	8.0	13
6	Branched Alkoxy Side Chain Enables High-Performance Non-Fullerene Acceptors with High Open-Circuit Voltage and Highly Ordered Molecular Packing. Chemistry of Materials, 2022, 34, 2059-2068.	6.7	20
7	<i>In situ</i> and <i>ex situ</i> investigations on ternary strategy and co-solvent effects towards high-efficiency organic solar cells. Energy and Environmental Science, 2022, 15, 2479-2488.	30.8	84
8	Heteroheptacene-based acceptors with thieno $[3,2-b] pyrrole yield high-performance polymer solar cells. National Science Review, 2022, 9, .$	9.5	67
9	High-Efficiency Ternary Organic Solar Cells with a Good Figure-of-Merit Enabled by Two Low-Cost Donor Polymers. ACS Energy Letters, 2022, 7, 2547-2556.	17.4	109
10	A Pyrroleâ€Fused Asymmetrical Electron Acceptor for Polymer Solar Cells with Approaching 16% Efficiency. Small Structures, 2021, 2, 2000052.	12.0	14
11	Synergy strategy to the flexible alkyl and chloride side-chain engineered quinoxaline-based D–A conjugated polymers for efficient non-fullerene polymer solar cells. Materials Chemistry Frontiers, 2021, 5, 1906-1916.	5.9	11
12	Significantly Boosting Efficiency of Polymer Solar Cells by Employing a Nontoxic Halogen-Free Additive. ACS Applied Materials & Samp; Interfaces, 2021, 13, 11117-11124.	8.0	54
13	Boosting Highly Efficient Hydrocarbon Solvent-Processed All-Polymer-Based Organic Solar Cells by Modulating Thin-Film Morphology. ACS Applied Materials & Samp; Interfaces, 2021, 13, 34301-34307.	8.0	20
14	Understanding the Charge Transfer State and Energy Loss Trade-offs in Non-fullerene-Based Organic Solar Cells. ACS Energy Letters, 2021, 6, 3408-3416.	17.4	40
15	High-Efficiency All-Polymer Solar Cells with Poly-Small-Molecule Acceptors Having π-Extended Units with Broad Near-IR Absorption. ACS Energy Letters, 2021, 6, 728-738.	17.4	74
16	Alkoxy substitution on IDT-Series and Y-Series non-fullerene acceptors yielding highly efficient organic solar cells. Journal of Materials Chemistry A, 2021, 9, 7481-7490.	10.3	42
17	Boosting the Efficiency of Non-fullerene Organic Solar Cells via a Simple Cathode Modification Method. ACS Applied Materials & Discrete Samp; Interfaces, 2021, 13, 51078-51085.	8.0	19
18	ITCâ€2Cl: A Versatile Middleâ€Bandgap Nonfullerene Acceptor for Highâ€Efficiency Panchromatic Ternary Organic Solar Cells. Solar Rrl, 2020, 4, 1900377.	5.8	29

#	Article	IF	CITATIONS
19	Improving the performance of near infrared binary polymer solar cells by adding a second non-fullerene intermediate band-gap acceptor. Journal of Materials Chemistry C, 2020, 8, 909-915.	5.5	47
20	Chalcogenâ€Fused Perylene Diimidesâ€Based Nonfullerene Acceptors for Highâ€Performance Organic Solar Cells: Insight into the Effect of O, S, and Se. Solar Rrl, 2020, 4, 1900453.	5.8	21
21	Altering the Positions of Chlorine and Bromine Substitution on the End Group Enables Highâ∈Performance Acceptor and Efficient Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2002649.	19.5	103
22	Deciphering the Role of Chalcogen-Containing Heterocycles in Nonfullerene Acceptors for Organic Solar Cells. ACS Energy Letters, 2020, 5, 3415-3425.	17.4	73
23	Fine-tuning HOMO energy levels between PM6 and PBDB-T polymer donors via ternary copolymerization. Science China Chemistry, 2020, 63, 1256-1261.	8.2	38
24	Adding a Third Component with Reduced Miscibility and Higher LUMO Level Enables Efficient Ternary Organic Solar Cells. ACS Energy Letters, 2020, 5, 2711-2720.	17.4	188
25	A compatible polymer acceptor enables efficient and stable organic solar cells as a solid additive. Journal of Materials Chemistry A, 2020, 8, 17706-17712.	10.3	51
26	Efficient Organic Ternary Solar Cells Employing Narrow Band Gap Diketopyrrolopyrrole Polymers and Nonfullerene Acceptors. Chemistry of Materials, 2020, 32, 7309-7317.	6.7	22
27	Precisely Controlling the Position of Bromine on the End Group Enables Wellâ€Regular Polymer Acceptors for Allâ€Polymer Solar Cells with Efficiencies over 15%. Advanced Materials, 2020, 32, e2005942.	21.0	282
28	Ternary Blending Driven Molecular Reorientation of Non-Fullerene Acceptor IDIC with Backbone Order. ACS Applied Energy Materials, 2020, 3, 10814-10822.	5.1	15
29	Effect of main and side chain chlorination on the photovoltaic properties of benzodithiophene- <i>alt</i> benzotriazole polymers. Journal of Materials Chemistry C, 2020, 8, 15426-15435.	5.5	10
30	Reducing <scp><i>V</i>_{OC}</scp> loss via structure compatible and high <scp>lowest unoccupied molecular orbital</scp> nonfullerene acceptors for over 17%â€efficiency ternary organic photovoltaics. EcoMat, 2020, 2, e12061.	11.9	23
31	Dopamine Semiquinone Radical Doped PEDOT:PSS: Enhanced Conductivity, Work Function and Performance in Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2000743.	19.5	97
32	Concurrent improvement in $\langle i\rangle J\langle i\rangle \langle sub\rangle SC\langle sub\rangle$ and $\langle i\rangle V\langle i\rangle \langle sub\rangle OC\langle sub\rangle$ in high-efficiency ternary organic solar cells enabled by a red-absorbing small-molecule acceptor with a high LUMO level. Energy and Environmental Science, 2020, 13, 2115-2123.	30.8	164
33	Fine-Tuning Energy Levels via Asymmetric End Groups Enables Polymer Solar Cells with Efficiencies over 17%. Joule, 2020, 4, 1236-1247.	24.0	344
34	Wide Band-gap Two-dimension Conjugated Polymer Donors with Different Amounts of Chlorine Substitution on Alkoxyphenyl Conjugated Side Chains for Non-fullerene Polymer Solar Cells. Chinese Journal of Polymer Science (English Edition), 2020, 38, 797-805.	3.8	15
35	15.34% efficiency all-small-molecule organic solar cells with an improved fill factor enabled by a fullerene additive. Energy and Environmental Science, 2020, 13, 2134-2141.	30.8	218
36	Tetrabromination versus Tetrachlorination: A Molecular Terminal Engineering of Nonfluorinated Acceptors to Control Aggregation for Highly Efficient Polymer Solar Cells with Increased V oc and Higher J sc Simultaneously. Solar Rrl, 2020, 4, 2000212.	5.8	5

#	Article	IF	CITATIONS
37	Understanding the Effect of End Group Halogenation in Tuning Miscibility and Morphology of Highâ€Performance Small Molecular Acceptors. Solar Rrl, 2020, 4, 2000250.		63
38	Improved organic solar cell efficiency based on the regulation of an alkyl chain on chlorinated non-fullerene acceptors. Materials Chemistry Frontiers, 2020, 4, 2428-2434.	5.9	27
39	Synergy of Liquid rystalline Smallâ€Molecule and Polymeric Donors Delivers Uncommon Morphology Evolution and 16.6% Efficiency Organic Photovoltaics. Advanced Science, 2020, 7, 2000149.	11.2	67
40	Fluorinated pyrazine-based D–A conjugated polymers for efficient non-fullerene polymer solar cells. Journal of Materials Chemistry A, 2020, 8, 7083-7089.	10.3	17
41	Over 15% Efficiency Polymer Solar Cells Enabled by Conformation Tuning of Newly Designed Asymmetric Smallâ€Molecule Acceptors. Advanced Functional Materials, 2020, 30, 2000383.	14.9	55
42	Efficient modulation of end groups for the asymmetric small molecule acceptors enabling organic solar cells with over 15% efficiency. Journal of Materials Chemistry A, 2020, 8, 5927-5935.	10.3	39
43	Conformation‶uning Effect of Asymmetric Small Molecule Acceptors on Molecular Packing, Interaction, and Photovoltaic Performance. Small, 2020, 16, e2001942.	10.0	49
44	Improving open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells efficiencies over 17%. Science China Chemistry, 2020, 63, 325-330.	8.2	292
45	Mechanically Robust All-Polymer Solar Cells from Narrow Band Gap Acceptors with Hetero-Bridging Atoms. Joule, 2020, 4, 658-672.	24.0	279
46	Dithieno[3,2â€ <i>b</i> :2ʹ,3ʹâ€ <i>d</i>]pyrrolâ€Fused Asymmetrical Electron Acceptors: A Study into the Effects of Nitrogenâ€Functionalization on Reducing Nonradiative Recombination Loss and Dipole Moment on Morphology. Advanced Science, 2020, 7, 1902657.	11.2	51
47	Asymmetric Acceptors with Fluorine and Chlorine Substitution for Organic Solar Cells toward 16.83% Efficiency. Advanced Functional Materials, 2020, 30, 2000456.	14.9	164
48	10.13% Efficiency Allâ€Polymer Solar Cells Enabled by Improving the Optical Absorption of Polymer Acceptors. Solar Rrl, 2020, 4, 2000142.	5.8	45
49	A monothiophene unit incorporating both fluoro and ester substitution enabling high-performance donor polymers for non-fullerene solar cells with 16.4% efficiency. Energy and Environmental Science, 2019, 12, 3328-3337.	30.8	337
50	Significantly improving the performance of polymer solar cells by the isomeric ending-group based small molecular acceptors: Insight into the isomerization. Nano Energy, 2019, 66, 104146.	16.0	47
51	A nonfullerene acceptor with a 1000 nm absorption edge enables ternary organic solar cells with improved optical and morphological properties and efficiencies over 15%. Energy and Environmental Science, 2019, 12, 2529-2536.	30.8	213
52	Unconjugated Sideâ€Chain Engineering Enables Small Molecular Acceptors for Highly Efficient Nonâ€Fullerene Organic Solar Cells: Insights into the Fineâ€Tuning of Acceptor Properties and Micromorphology. Advanced Functional Materials, 2019, 29, 1902155.	14.9	105