Dinesh Kumar Kotnees

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5854445/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unique Tackification Behavior of Needle-like Sepiolite Nanoclay in Brominated Isobutylene- <i>co</i> - <i>p</i> -methylstyrene (BIMS) Rubber. Macromolecules, 2010, 43, 4184-4193.	4.8	52
2	Highly transparent thermoplastic elastomer from isotactic polypropylene and styrene/ethyleneâ€butylene/styrene triblock copolymer: Structureâ€property correlations. Polymer Engineering and Science, 2010, 50, 331-341.	3.1	34
3	Carbon dot – Unique reinforcing filler for polymer with special reference to physico-mechanical properties. Polymer, 2017, 112, 189-200.	3.8	32
4	Preferentially fixing nanoclays in the phases of incompatible carboxylated nitrile rubber (XNBR)-natural rubber (NR) blend using thermodynamic approach and its effect on physico mechanical properties. Polymer, 2016, 99, 21-43.	3.8	31
5	Unique compatibilized thermoplastic elastomer from polypropylene and epichlorohydrin rubber. Polymer, 2019, 183, 121866.	3.8	22
6	Carbon dots: Fluorescence active, covalently conjugated and strong reinforcing nanofiller for polymer latex. Nano Structures Nano Objects, 2020, 23, 100477.	3.5	19
7	Remarkable synergetic effect by in-situ covalent hybridization of carbon dots with graphene oxide and carboxylated acrylonitrile butadiene rubber. Polymer, 2019, 175, 283-293.	3.8	17
8	Interplay between bulk viscoelasticity and surface energy in autohesive tack of rubberâ€ŧackifier blends. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 972-982.	2.1	15
9	Elegant Way of Strengthening Polymerâ^Polymer Interface Using Nanoclay. ACS Applied Materials & Interfaces, 2010, 2, 2933-2943.	8.0	15
10	Unique approach to debundle carbon nanotubes in polymer matrix using carbon dots for enhanced properties. European Polymer Journal, 2020, 123, 109454.	5.4	15
11	Influence of Aging on Autohesive Tack of Brominated Isobutylene-co- <i>p</i> -methylstyrene (BIMS) Rubber in the Presence of Phenolic Resin Tackifier. Journal of Adhesion, 2008, 84, 764-787.	3.0	11
12	Unique Compatibilized Thermoplastic Elastomer with High Strength and Remarkable Ductility: Effect of Multiple Point Interactions within a Rubber-Plastic Blend. ACS Omega, 2020, 5, 12789-12808.	3.5	10
13	Selective Orientation of Needlelike Sepiolite Nanoclay in Polymer Blend for Controlled Properties. ACS Omega, 2018, 3, 11691-11702.	3.5	8
14	Catalyst driven preferential growth of in-situ generated nanosilica particles in the phases of incompatible polymer blend and its effect on physico-mechanical properties. Polymer, 2018, 156, 186-202.	3.8	4
15	Unique behavior of in-situ generated nanosilica particles on physico-mechanical properties of fluoroelastomer. Journal of Polymer Research, 2018, 25, 1.	2.4	2