Kymberly Gowdy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5854306/publications.pdf

Version: 2024-02-01

65 1,356 22
papers citations h-index

368 395343 33 h-index g-index

66 66 all docs citations

66 times ranked 2347 citing authors

#	Article	IF	CITATIONS
1	Update on the Features and Measurements of Experimental Acute Lung Injury in Animals: An Official American Thoracic Society Workshop Report. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, e1-e14.	1.4	82
2	PRMT5 in T Cells Drives Th17 Responses, Mixed Granulocytic Inflammation, and Severe Allergic Airway Inflammation. Journal of Immunology, 2022, 208, 1525-1533.	0.4	8
3	Emerging Insights into the Impact of Air Pollution on Immune-Mediated Asthma Pathogenesis. Current Allergy and Asthma Reports, 2022, 22, 77-92.	2.4	17
4	Sex Differences in Pulmonary Eicosanoids and Specialized Pro-Resolving Mediators in Response to Ozone Exposure. Toxicological Sciences, 2021, 183, 170-183.	1.4	25
5	Scavenger Receptor BI Attenuates IL-17A–Dependent Neutrophilic Inflammation in Asthma. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 698-708.	1.4	10
6	Prohibitinâ€1 Is a Dynamically Regulated Blood Protein With Cardioprotective Effects in Sepsis. Journal of the American Heart Association, 2021, 10, e019877.	1.6	6
7	Associations between maternal obesity, gestational cytokine levels and child obesity in the <scp>NEST</scp> cohort. Pediatric Obesity, 2021, 16, e12763.	1.4	15
8	Novel Mechanisms of Ozone-Induced Pulmonary Inflammation and Resolution, and the Potential Protective Role of Scavenger Receptor Bl. Research Report (health Effects Institute), 2021, , 1-49.	1.6	0
9	Estrogen receptor-α in female skeletal muscle is not required for regulation of muscle insulin sensitivity and mitochondrial regulation. Molecular Metabolism, 2020, 34, 1-15.	3.0	21
10	Obesity-Driven Deficiencies of Specialized Pro-resolving Mediators May Drive Adverse Outcomes During SARS-CoV-2 Infection. Frontiers in Immunology, 2020, 11, 1997.	2.2	30
11	Cholesterol-25-hydroxylase promotes efferocytosis and resolution of lung inflammation. JCI Insight, 2020, 5, .	2.3	35
12	Early Metabolic Syndrome (MetS) in Chronic Rhesus Macaque Model of Human Allergic Asthma. FASEB Journal, 2020, 34, 1-1.	0.2	0
13	Tissue-specific characterization of mitochondrial branched-chain keto acid oxidation using a multiplexed assay platform. Biochemical Journal, 2019, 476, 1521-1537.	1.7	17
14	Alveolar Macrophage ABCG1 Deficiency Promotes Pulmonary Granulomatous Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 332-340.	1.4	15
15	Sex Modifies Acute Ozone-Mediated Airway Physiologic Responses. Toxicological Sciences, 2019, 169, 499-510.	1.4	37
16	Influenza-Mediated Lung Infection Models. Methods in Molecular Biology, 2019, 1960, 191-205.	0.4	3
17	Maternal pre-pregnancy obesity, offspring cord blood DNA methylation, and offspring cardiometabolic health in early childhood: an epigenome-wide association study. Epigenetics, 2019, 14, 325-340.	1.3	59
18	Leucine-rich repeats and calponin homology containing 4 (Lrch4) regulates the innate immune response. Journal of Biological Chemistry, 2019, 294, 1997-2008.	1.6	16

#	Article	IF	CITATIONS
19	In Vivo Assessment of Alveolar Macrophage Efferocytosis Following Ozone Exposure. Journal of Visualized Experiments, $2019, \dots$	0.2	8
20	Pulmonary Exposure to Magnéli Phase Titanium Suboxides Results in Significant Macrophage Abnormalities and Decreased Lung Function. Frontiers in Immunology, 2019, 10, 2714.	2.2	12
21	IL-17A Contributes to Lung Fibrosis in a Model of Chronic Pulmonary Graft-versus-host Disease. Transplantation, 2019, 103, 2264-2274.	0.5	7
22	Epithelial membrane protein 2 governs transepithelial migration of neutrophils into the airspace. Journal of Clinical Investigation, 2019, 130, 157-170.	3.9	24
23	Specialized Pro-Resolving Lipid Mediators Regulate Ozone-Induced Pulmonary and Systemic Inflammation. Toxicological Sciences, 2018, 163, 466-477.	1.4	42
24	Euthanasia- and Lavage-mediated Effects on Bronchoalveolar Measures of Lung Injury and Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 257-266.	1.4	32
25	Effects of Simulated Smog Atmospheres in Rodent Models of Metabolic and Immunologic Dysfunction. Environmental Science & Envir	4.6	13
26	Ozone-Induced Vascular Contractility and Pulmonary Injury Are Differentially Impacted by Diets Enriched With Coconut Oil, Fish Oil, and Olive Oil. Toxicological Sciences, 2018, 163, 57-69.	1.4	23
27	MyD88-dependent dendritic and epithelial cell crosstalk orchestrates immune responses to allergens. Mucosal Immunology, 2018, 11, 796-810.	2.7	18
28	Flow Cytometry for the Immunotoxicologist. Methods in Molecular Biology, 2018, 1803, 183-197.	0.4	2
29	B Cell Activity Is Impaired in Human and Mouse Obesity and Is Responsive to an Essential Fatty Acid upon Murine Influenza Infection. Journal of Immunology, 2017, 198, 4738-4752.	0.4	115
30	Effects of Orally Ingested Arsenic on Respiratory Epithelial Permeability to Bacteria and Small Molecules in Mice. Environmental Health Perspectives, 2017, 125, 097024.	2.8	18
31	Irgm1 coordinately regulates autoimmunity and host defense at select mucosal surfaces. JCI Insight, 2017, 2, .	2.3	18
32	Ozone-derived Oxysterols Affect Liver X Receptor (LXR) Signaling. Journal of Biological Chemistry, 2016, 291, 25192-25206.	1.6	23
33	Role for phospholipid acyl chains and cholesterol in pulmonary infections and inflammation. Journal of Leukocyte Biology, 2016, 100, 985-997.	1.5	15
34	Pulmonary instillation of MWCNT increases lung permeability, decreases gp130 expression in the lungs, and initiates cardiovascular IL-6 transsignaling. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L142-L154.	1.3	11
35	N-3 polyunsaturated fatty acids modulate B cell activity in pre-clinical models: Implications for the immune response to infections. European Journal of Pharmacology, 2016, 785, 10-17.	1.7	39
36	Impaired CD8+ T cell immunity after allogeneic bone marrow transplantation leads to persistent and severe respiratory viral infection. Transplant Immunology, 2015, 32, 51-60.	0.6	9

3

#	Article	IF	CITATIONS
37	Key role for scavenger receptor B-I in the integrative physiology of host defense during bacterial pneumonia. Mucosal Immunology, 2015, 8, 559-571.	2.7	21
38	Trif-dependent induction of Th17 immunity by lung dendritic cells. Mucosal Immunology, 2015, 8, 186-197.	2.7	17
39	Role of C-C Motif Ligand 2 and C-C Motif Receptor 2 in Murine Pulmonary Graft-versus-Host Disease after Lipopolysaccharide Inhalations. American Journal of Respiratory Cell and Molecular Biology, 2014, 51, 810-821.	1.4	12
40	Emerging roles for cholesterol and lipoproteins in lung disease. Pulmonary Pharmacology and Therapeutics, 2013, 26, 430-437.	1.1	105
41	Relation between objective measures of atopy and myocardial infarction in the United States. Journal of Allergy and Clinical Immunology, 2013, 131, 405-411.e11.	1.5	18
42	Reply. Journal of Allergy and Clinical Immunology, 2013, 131, 1715-1716.	1.5	0
43	p53 integrates host defense and cell fate during bacterial pneumonia. Journal of Experimental Medicine, 2013, 210, 891-904.	4.2	54
44	Correction: Novel Role for Surfactant Protein A in Gastrointestinal Graft-versus-Host Disease. Journal of Immunology, 2013, 190, 1382-1382.	0.4	0
45	Surfactant Protein A Modulates Induction of Regulatory T Cells via TGF-β. Journal of Immunology, 2012, 188, 4376-4384.	0.4	24
46	Novel Role for Surfactant Protein A in Gastrointestinal Graft-versus-Host Disease. Journal of Immunology, 2012, 188, 4897-4905.	0.4	9
47	ATP Binding Cassette Transporter G1 Deletion Induces IL-17–Dependent Dysregulation of Pulmonary Adaptive Immunity. Journal of Immunology, 2012, 188, 5327-5336.	0.4	30
48	Myeloid Cellâ^'Specific ABCA1 Deletion Protects Mice From Bacterial Infection. Circulation Research, 2012, 111, 1398-1409.	2.0	28
49	Critical Role Of CCL2 (MCP-1) In The Development Of Pulmonary Graft-Versus-Host Disease After Murine Allogeneic Bone Marrow Transplant. , 2012, , .		0
50	Apolipoproteins and Apolipoprotein Mimetic Peptides Modulate Phagocyte Trafficking through Chemotactic Activity. Journal of Biological Chemistry, 2012, 287, 43730-43740.	1.6	33
51	Protective Role of T-bet and Th1 Cytokines in Pulmonary Graft-versus-Host Disease and Peribronchiolar Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 249-256.	1.4	24
52	Irgm1 Regulates The Pulmonary Innate Immune Response. , 2012, , .		0
53	Novel Role For Scavenger Receptor B-I In Pulmonary Innate Immunity. , 2012, , .		0
54	Innate immune activation potentiates alloimmune lung disease independent of chemokine (C-X-C motif) receptor 3. Journal of Heart and Lung Transplantation, 2011, 30, 717-725.	0.3	17

#	Article	IF	CITATIONS
55	Innate immune activation by the viral PAMP poly I:C potentiates pulmonary graft-versus-host disease after allogeneic hematopoietic cell transplant. Transplant Immunology, 2011, 24, 83-93.	0.6	16
56	Lipopolysaccharide Potentiates Pulmonary Graft-Versus-Host Disease In Murine Bone Marrow Transplantation Across Minor Histocompatibility Antigen Mismatch., 2011,,.		0
57	Viral Immunity Is Impaired In The Lungs Of Allogeneic Bone Marrow Transplanted Mice. , 2011, , .		0
58	Inhaled Lipopolysaccharide Enhances Alloimmune Lung Disease Via The TLR4-TRIF Pathway. , 2011, , .		0
59	Pulmonary Innate Immune Activation By Poly I:C Promotes Lung Inflammation And Epithelial Injury Following Allogeneic Bone Marrow Transplantation. , 2010, , .		0
60	Role of oxidative stress on diesel-enhanced influenza infection in mice. Particle and Fibre Toxicology, 2010, 7, 34.	2.8	34
61	Pulmonary Innate Immune Activation In Allotransplantation Induces A Distinct Antigen Presenting Cell Profile Followed By Lymphocytic Inflammation. , 2010, , .		0
62	LPS Potentiates Th17 And Th2 Mediated Chronic Pulmonary Graft-Versus-Host Disease (GVHD) After Allogeneic Bone Marrow Transplant (BMT)., 2010,,.		0
63	Modulation of pulmonary inflammatory responses and antimicrobial defenses in mice exposed to diesel exhaust. Toxicology and Applied Pharmacology, 2008, 229, 310-319.	1.3	54
64	Diesel Exhaust Enhanced Susceptibility to Influenza Infection is Associated with Decreased Surfactant Protein Expression. Inhalation Toxicology, 2007, 19, 1121-1133.	0.8	35
65	Host Defense and Immunotoxicology of the Lung. , 2006, , 307-324.		O