Lei Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5854201/publications.pdf Version: 2024-02-01

l Et l III

#	Article	IF	CITATIONS
1	Engineering Interlayer Electron–Phonon Coupling in WS ₂ /BN Heterostructures. Nano Letters, 2022, 22, 2725-2733.	9.1	7
2	Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride. Nature Materials, 2021, 20, 43-48.	27.5	84
3	Four-dimensional vibrational spectroscopy for nanoscale mapping of phonon dispersion in BN nanotubes. Nature Communications, 2021, 12, 1179.	12.8	24
4	Microscopic Kinetics Pathway of Salt Crystallization in Graphene Nanocapillaries. Physical Review Letters, 2021, 126, 136001.	7.8	22
5	Raman spectra evidence for the covalent-like quasi-bonding between exfoliated MoS2 and Au films. Science China Information Sciences, 2021, 64, 1.	4.3	10
6	Modification of the Interlayer Coupling and Chemical Reactivity of Multilayer Graphene through Wrinkle Engineering. Chemistry of Materials, 2021, 33, 2506-2515.	6.7	10
7	Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nature Nanotechnology, 2021, 16, 1231-1236.	31.5	120
8	Synthesis of centimeter-scale high-quality polycrystalline hexagonal boron nitride films from Fe fluxes. Nanoscale, 2021, 13, 11223-11231.	5.6	9
9	Femtosecond Laser Irradiation-Mediated MoS ₂ –Metal Contact Engineering for High-Performance Field-Effect Transistors and Photodetectors. ACS Applied Materials & Interfaces, 2021, 13, 54246-54257.	8.0	15
10	lsotope Effect of Hydrogen Functionalization in Layered Germanane: Implications for Germanane-Based Optoelectronics. ACS Applied Nano Materials, 2021, 4, 13708-13715.	5.0	6
11	Universal mechanical exfoliation of large-area 2D crystals. Nature Communications, 2020, 11, 2453.	12.8	394
12	Synthesis of Honeycombâ€6tructured Beryllium Oxide via Graphene Liquid Cells. Angewandte Chemie, 2020, 132, 15864-15870.	2.0	0
13	Synthesis of Honeycomb‣tructured Beryllium Oxide via Graphene Liquid Cells. Angewandte Chemie - International Edition, 2020, 59, 15734-15740.	13.8	18
14	Valley Polarization in Superacid-Treated Monolayer MoS ₂ . ACS Applied Electronic Materials, 2020, 2, 1981-1988.	4.3	4
15	Visualizing Anisotropic Oxygen Diffusion in Ceria under Activated Conditions. Physical Review Letters, 2020, 124, 056002.	7.8	12
16	Laser annealing towards high-performance monolayer MoS ₂ and WSe ₂ field effect transistors. Nanotechnology, 2020, 31, 30LT02.	2.6	6
17	Low-temperature epitaxy of transferable high-quality Pd(111) films on hybrid graphene/Cu(111) substrate. Nano Research, 2019, 12, 2712-2717.	10.4	5
18	High-efficiency modulation of coupling between different polaritons in an in-plane graphene/hexagonal boron nitride heterostructure. Nanoscale, 2019, 11, 2703-2709.	5.6	24

Lei Liu

#	Article	IF	CITATIONS
19	Sub-10 nm stable graphene quantum dots embedded in hexagonal boron nitride. Nanoscale, 2019, 11, 4226-4230.	5.6	18
20	Direct imaging of the nitrogen-rich edge in monolayer hexagonal boron nitride and its band structure tuning. Nanoscale, 2019, 11, 20676-20684.	5.6	10
21	Electrical Control of Circular Photogalvanic Spin-Valley Photocurrent in a Monolayer Semiconductor. ACS Applied Materials & Interfaces, 2019, 11, 3334-3341.	8.0	19
22	Visualizing grain boundaries in monolayer MoSe2 using mild H2O vapor etching. Nano Research, 2018, 11, 4082-4089.	10.4	22
23	Mapping the layer count of few-layer hexagonal boron nitride at high lateral spatial resolutions. 2D Materials, 2018, 5, 015007.	4.4	8
24	Graphene-based in-plane heterostructures for atomically thin electronics. New Carbon Materials, 2018, 33, 481-492.	6.1	8
25	Experimentally determined edge orientation of triangular crystals of hexagonal boron nitride. Physica Status Solidi (B): Basic Research, 2017, 254, 1700069.	1.5	13
26	Towards the controlled CVD growth of graphitic B–C–N atomic layer films: The key role of B–C delivery molecular precursor. Nano Research, 2016, 9, 1221-1235.	10.4	16
27	Interplay between intercalated oxygen superstructures and monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>h</mml:mi>-BN on Cu(100). Physical Review B, 2016, 94, .</mml:math 	3.2	16
28	Tunneling spectra of graphene on copper unraveled. Physical Chemistry Chemical Physics, 2016, 18, 17081-17090.	2.8	2
29	Peculiar Plasmon Peak Position in Electron Energy Loss Spectrum of Hexagonal Boron Nitride/Graphene Double Layer. Microscopy and Microanalysis, 2015, 21, 985-986.	0.4	5
30	Heteroepitaxial Growth of Two-Dimensional Hexagonal Boron Nitride Templated by Graphene Edges. Science, 2014, 343, 163-167.	12.6	479
31	Spatially resolved one-dimensional boundary states in graphene–hexagonal boron nitride planar heterostructures. Nature Communications, 2014, 5, 5403.	12.8	71
32	Tunneling characteristics in chemical vapor deposited graphene–hexagonal boron nitride–graphene junctions. Applied Physics Letters, 2014, 104, .	3.3	49
33	Unusual role of epilayer–substrate interactions in determining orientational relations in van der Waals epitaxy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16670-16675.	7.1	64
34	Synthesis of Millimeter-Size Hexagon-Shaped Graphene Single Crystals on Resolidified Copper. ACS Nano, 2013, 7, 8924-8931.	14.6	178
35	Synthesis of nitrogen-doped single-walled carbon nanotubes and monitoring of doping by Raman spectroscopy. Chinese Physics B, 2013, 22, 086101.	1.4	7
36	Controlled oxidative functionalization of monolayer graphene by water-vapor plasma etching. Carbon, 2012, 50, 3039-3044.	10.3	35

Lei Liu

#	Article	IF	CITATIONS
37	Ferroelectric Gated Electrical Transport in CdS Nanotetrapods. Nano Letters, 2011, 11, 1913-1918.	9.1	23
38	Wet-Chemistry-Assisted Nanotube-Substitution Reaction for High-Efficiency and Bulk-Quantity Synthesis of Boron- and Nitrogen-Codoped Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2011, 133, 13216-13219.	13.7	39
39	Electrical Conductivity, Chemistry, and Bonding Alternations under Graphene Oxide to Graphene Transition As Revealed by <i>In Situ</i> TEM. ACS Nano, 2011, 5, 4401-4406.	14.6	98
40	Nanosphere Lithography for the Fabrication of Ultranarrow Graphene Nanoribbons and On hip Bandgap Tuning of Graphene. Advanced Materials, 2011, 23, 1246-1251.	21.0	126
41	Carbon nanotube transistors with graphene oxide films as gate dielectrics. Science China: Physics, Mechanics and Astronomy, 2010, 53, 828-833.	5.1	23
42	Higher-order harmonic resonances and mechanical properties of individual cadmium sulphide nanowires measured by in situ transmission electron microscopy. Journal of Electron Microscopy, 2010, 59, 285-289.	0.9	15
43	Two-bit ferroelectric field-effect transistor memories assembled on individual nanotubes. Nanotechnology, 2009, 20, 475305.	2.6	20
44	Bandgap engineering of graphene: A density functional theory study. Applied Physics Letters, 2009, 95, .	3.3	121

4