
Joanna Olesiak-Banska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5853818/publications.pdf Version: 2024-02-01

IOANNA OLESIAK-BANSKA

#	Article	IF	CITATIONS
1	Two-photon absorption and photoluminescence of colloidal gold nanoparticles and nanoclusters. Chemical Society Reviews, 2019, 48, 4087-4117.	18.7	146
2	Third-Order Nonlinear Optical Properties of Colloidal Gold Nanorods. Journal of Physical Chemistry C, 2012, 116, 13731-13737.	1.5	83
3	Post-synthesis reshaping of gold nanorods using a femtosecond laser. Physical Chemistry Chemical Physics, 2014, 16, 71-78.	1.3	61
4	Bio-mediated synthesis, characterization and cytotoxicity of gold nanoparticles. Physical Chemistry Chemical Physics, 2015, 17, 29014-29019.	1.3	47
5	Selective parallel G-quadruplex recognition by a NIR-to-NIR two-photon squaraine. Chemical Science, 2018, 9, 8375-8381.	3.7	44
6	Photochromic switching of the DNA helicity induced by azobenzene derivatives. Scientific Reports, 2016, 6, 28605.	1.6	42
7	pH-Induced transformation of ligated Au ₂₅ to brighter Au ₂₃ nanoclusters. Nanoscale, 2018, 10, 11335-11341.	2.8	39
8	A closer look at two-photon absorption, absorption saturation and nonlinear refraction in gold nanoclusters. RSC Advances, 2016, 6, 98748-98752.	1.7	38
9	Synthesis, optical and nonlinear optical properties of new pyrazoline derivatives. Dyes and Pigments, 2014, 102, 63-70.	2.0	36
10	Quadratic and Cubic Nonlinear Optical Properties of Salts of Diquat-Based Chromophores with Diphenylamino Substituents. Journal of Physical Chemistry A, 2010, 114, 12028-12041.	1.1	35
11	Linear Optical and Thirdâ€Order Nonlinear Optical Properties of Some Fluorenyl―and Triarylamineâ€Containing Tetracyanobutadiene Derivatives. Chemistry - A European Journal, 2016, 22, 10155-10167.	1.7	35
12	Cubic nonlinear optical properties of new zinc tetraphenyl porphyrins peripherally functionalized with electron-rich Ru(II) alkynyl substituents. Tetrahedron, 2012, 68, 10351-10359.	1.0	31
13	Remarkable Effect of Iridium Cyclometalation on the Nonlinear Absorption Properties of a Quadrupolar Imine Ligand. Inorganic Chemistry, 2013, 52, 10705-10707.	1.9	28
14	Popcorn-shaped gold nanoparticles: Plant extract-mediated synthesis, characterization and multiphoton-excited luminescence properties. Materials Chemistry and Physics, 2019, 229, 56-60.	2.0	27
15	Polarization-Sensitive Two-Photon Microscopy Study of the Organization of Liquid-Crystalline DNA. Biophysical Journal, 2009, 97, 2348-2357.	0.2	25
16	Shell-thickness-dependent nonlinear optical properties of colloidal gold nanoshells. Journal of Materials Chemistry C, 2014, 2, 7239-7246.	2.7	25
17	Biogenic gold nanoparticles enhance methylene blue-induced phototoxic effect on Staphylococcus epidermidis. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	25
18	Interactions of Isophorone Derivatives with DNA: Spectroscopic Studies. PLoS ONE, 2015, 10, e0129817.	1.1	25

#	Article	IF	CITATIONS
19	Interactions of a biocompatible water-soluble anthracenyl polymer derivative with double-stranded DNA. Physical Chemistry Chemical Physics, 2015, 17, 30318-30327.	1.3	24
20	One- and Two-Photon Absorption of a Spiropyran–Merocyanine System: Experimental and Theoretical Studies. Journal of Physical Chemistry B, 2015, 119, 1515-1522.	1.2	23
21	Gold nanorods as multifunctional probes in a liquid crystalline DNA matrix. Nanoscale, 2013, 5, 10975.	2.8	22
22	Revealing Spectral Features in Two-Photon Absorption Spectrum of Hoechst 33342: A Combined Experimental and Quantum-Chemical Study. Journal of Physical Chemistry B, 2013, 117, 12013-12019.	1.2	22
23	Unravelling the Binding Mechanism of a Poly(cationic) Anthracenyl Fluorescent Probe with High Affinity toward Double-Stranded DNA. Biomacromolecules, 2016, 17, 3609-3618.	2.6	22
24	DNA as scaffolding for nanophotonic structures. Journal of Nanophotonics, 2012, 6, 064505-1.	0.4	21
25	A Fluorescent Polymer Probe with High Selectivity toward Vascular Endothelial Cells for and beyond Noninvasive Two-Photon Intravital Imaging of Brain Vasculature. ACS Applied Materials & Interfaces, 2016, 8, 17047-17059.	4.0	20
26	Influence of Atmospheric Pressure Non-thermal Plasma on Inactivation of Biofilm Cells. Plasma Chemistry and Plasma Processing, 2018, 38, 1181-1197.	1.1	20
27	Lattice Shrinkage by Incorporation of Recombinant Starmakerâ€Like Protein within Bioinspired Calcium Carbonate Crystals. Chemistry - A European Journal, 2019, 25, 12740-12750.	1.7	20
28	Two-Photon Imaging of 3D Organization of Bimetallic AuAg Nanoclusters in DNA Matrix. Langmuir, 2017, 33, 8993-8999.	1.6	18
29	Liquid crystal phases of DNA: Evaluation of DNA organization by twoâ€photon fluorescence microscopy and polarization analysis. Biopolymers, 2011, 95, 365-375.	1.2	15
30	Autofluorescence of Amyloids Determined by Enantiomeric Composition of Peptides. Journal of Physical Chemistry B, 2021, 125, 5502-5510.	1.2	15
31	A 5-(difluorenyl)-1,10-phenanthroline-based Ru(<scp>ii</scp>) complex as a coating agent for potential multifunctional gold nanoparticles. Physical Chemistry Chemical Physics, 2014, 16, 14826-14833.	1.3	14
32	Synthesis and optical properties of water-soluble fluoride nanophosphors co-doped with Eu3+ and Tb3+. Optical Materials, 2011, 33, 1419-1423.	1.7	13
33	Nonlinear absorption spectra of ethidium and ethidium homodimer. Chemical Physics, 2012, 404, 33-35.	0.9	12
34	Two-photon chiro-optical properties of gold Au ₂₅ nanoclusters. Physical Chemistry Chemical Physics, 2018, 20, 24523-24526.	1.3	12
35	Photothermal stability of biologically and chemically synthesized gold nanoprisms. Journal of Nanoparticle Research, 2017, 19, 327.	0.8	11
36	DNA liquid crystals doped with AuAg nanoclusters: One-photon and two-photon imaging. Journal of Molecular Liquids, 2018, 259, 82-87.	2.3	11

JOANNA OLESIAK-BANSKA

#	Article	IF	CITATIONS
37	Fish Otolith Matrix Macromolecule-64 (OMM-64) and Its Role in Calcium Carbonate Biomineralization. Crystal Growth and Design, 2020, 20, 5808-5819.	1.4	11
38	One- and Two-Photon Excited Autofluorescence of Lysozyme Amyloids. Journal of Physical Chemistry Letters, 2022, 13, 4673-4681.	2.1	10
39	Stabilization of DNA liquid crystals on doping with gold nanorods. Physical Chemistry Chemical Physics, 2016, 18, 7278-7283.	1.3	8
40	Photochemical analysis of structural transitions in DNA liquid crystals reveals differences in spatial structure of DNA molecules organized in liquid crystalline form. Scientific Reports, 2018, 8, 4528.	1.6	8
41	Dinuclear Rhenium Complexes with a Bridging Heliceneâ€bisâ€bipyridine Ligand: Synthesis, Structure, and Photophysical and Chiroptical Properties. ChemPlusChem, 2020, 85, 2446-2454.	1.3	7
42	Two-Photon Excited Polarization-Dependent Autofluorescence of Amyloids as a Label-Free Method of Fibril Organization Imaging. Journal of Physical Chemistry Letters, 2021, 12, 1432-1437.	2.1	7
43	Circular Dichroism of Gold Bipyramid Dimers. Journal of Physical Chemistry Letters, 2021, 12, 5208-5213.	2.1	7
44	Plasmonic Enhancement of Two-Photon Excited Luminescence of Gold Nanoclusters. Molecules, 2022, 27, 807.	1.7	7
45	Z-scan studies of nonlinear optical properties of colloidal gold nanorods and nanoshells. Journal of Nanophotonics, 2014, 9, 093797.	0.4	6
46	Two-photon excited luminescence and second-harmonic generation in quinacridone microstructures. Dyes and Pigments, 2020, 177, 108268.	2.0	6
47	Gold Nanoclusters Display Low Immunogenic Effect in Microglia Cells. Nanomaterials, 2021, 11, 1066.	1.9	6
48	Spontaneous formation of liquid crystalline phases and phase transitions in highly concentrated plasmid DNA. Liquid Crystals, 2011, 38, 461-468.	0.9	5
49	Shape and size separation of gold nanoparticles using glucose gradient density. Proceedings of SPIE, 2012, , .	0.8	4
50	Amyloid fibrils in superstructures – local ordering revealed by polarization analysis of two-photon excited autofluorescence. Biomaterials Science, 2022, 10, 1554-1561.	2.6	3
51	Nonlinear absorption in nanosystems of biological significance Materials Research Society Symposia Proceedings, 2014, 1698, 7.	0.1	2
52	Comparison of third-order nonlinear optical properties of colloidal gold nanoshells and nanorods. , 2014, , .		1
53	Surface plasmon influence on two-photon luminescence from single gold nanorods. , 2014, , .		1