Rod Connolly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/585364/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Out of the shadows: automatic fish detection from acoustic cameras. Aquatic Ecology, 2023, 57, 833-844.	0.7	5
2	Twitter conversations reveal issue salience of aviation in the broader context of climate change. Journal of Air Transport Management, 2022, 98, 102157.	2.4	10
3	Supporting urban ecosystem services across terrestrial, marine and freshwater realms. Science of the Total Environment, 2022, 817, 152689.	3.9	5
4	Connectivity Shapes Functional Diversity and Maintains Complementarity in Surf Zones on Exposed Coasts. Estuaries and Coasts, 2022, 45, 1534-1544.	1.0	5
5	Dredging fundamentally reshapes the ecological significance of 3D terrain features for fish in estuarine seascapes. Landscape Ecology, 2022, 37, 1385-1400.	1.9	10
6	Dredging transforms the seafloor and enhances functional diversity in urban seascapes. Science of the Total Environment, 2022, 831, 154811.	3.9	7
7	Ambitious global targets for mangrove and seagrass recovery. Current Biology, 2022, 32, 1641-1649.e3.	1.8	23
8	A review of support tools to assess multi-sector interactions in the emerging offshore Blue Economy. Environmental Science and Policy, 2022, 133, 203-214.	2.4	4
9	Interactive effects of multiple stressors vary with consumer interactions, stressor dynamics and magnitude. Ecology Letters, 2022, 25, 1483-1496.	3.0	30
10	The Mouths of Estuaries Are Key Transition Zones that Concentrate the Ecological Effects of Predators. Estuaries and Coasts, 2021, 44, 1557.	1.0	15
11	Climate crisis and flying: social media analysis traces the rise of "flightshame― Journal of Sustainable Tourism, 2021, 29, 1450-1469.	5.7	30
12	The slow rise of technology: Computer vision techniques in fish population connectivity. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 210-217.	0.9	13
13	Human Actions Alter Tidal Marsh Seascapes and the Provision of Ecosystem Services. Estuaries and Coasts, 2021, 44, 1628-1636.	1.0	44
14	Marine and coastal ecosystem-based adaptation in Asia and Oceania: review of approaches and integration with marine spatial planning. Pacific Conservation Biology, 2021, 27, 104.	0.5	9
15	Geographic Variation in Salt Marsh Structure and Function for Nekton: a Guide to Finding Commonality Across Multiple Scales. Estuaries and Coasts, 2021, 44, 1497-1507.	1.0	18
16	Disturbance type determines how connectivity shapes ecosystem resilience. Scientific Reports, 2021, 11, 1188.	1.6	11
17	Residual Attention Network vs Real Attention on Aesthetic Assessment. Communications in Computer and Information Science, 2021, , 310-320.	0.4	0
18	Climate Change Implications for Tidal Marshes and Food Web Linkages to Estuarine and Coastal Nekton, Estuaries and Coasts, 2021, 44, 1637-1648.	1.0	35

#	Article	IF	CITATIONS
19	Tidal Marsh Restoration Optimism in a Changing Climate and Urbanizing Seascape. Estuaries and Coasts, 2021, 44, 1681-1690.	1.0	30
20	Evaluating multiple stressor research in coastal wetlands: A systematic review. Marine Environmental Research, 2021, 164, 105239.	1.1	14
21	The influence of seafloor terrain on fish and fisheries: A global synthesis. Fish and Fisheries, 2021, 22, 707-734.	2.7	30
22	Future carbon emissions from global mangrove forest loss. Global Change Biology, 2021, 27, 2856-2866.	4.2	93
23	Annotated Video Footage for Automated Identification and Counting of Fish in Unconstrained Seagrass Habitats. Frontiers in Marine Science, 2021, 8, .	1.2	21
24	Novel Applications of Technology for Advancing Tidal Marsh Ecology. Estuaries and Coasts, 2021, 44, 1568-1578.	1.0	11
25	Automatic detection of fish and tracking of movement for ecology. Ecology and Evolution, 2021, 11, 8254-8263.	0.8	39
26	Longâ€ŧerm declines and recovery of meadow area across the world's seagrass bioregions. Global Change Biology, 2021, 27, 4096-4109.	4.2	165
27	Applying systematic conservation planning to improve the allocation of restoration actions at multiple spatial scales. Restoration Ecology, 2021, 29, e13403.	1.4	22
28	Automating the analysis of fish grazing behaviour from videos using image classification and optical flow. Animal Behaviour, 2021, 177, 31-37.	0.8	12
29	Opportunities for improving recognition of coastal wetlands in global ecosystem assessment frameworks. Ecological Indicators, 2021, 126, 107694.	2.6	17
30	Ecosystem type drives tea litter decomposition and associated prokaryotic microbiome communities in freshwater and coastal wetlands at a continental scale. Science of the Total Environment, 2021, 782, 146819.	3.9	12
31	Remote estimation of aquatic light environments using machine learning: A new management tool for submerged aquatic vegetation. Science of the Total Environment, 2021, 782, 146886.	3.9	3
32	Human modifications to estuaries correlate with the morphology and functional roles of coastal fish. Marine Environmental Research, 2021, 170, 105443.	1.1	3
33	Ecological Constraint Mapping: Understanding Outcome-Limiting Bottlenecks for Improved Environmental Decision-Making in Marine and Coastal Environments. Frontiers in Marine Science, 2021, 8, .	1.2	7
34	Quantifying human use of sandy shores with aerial remote sensing technology: The sky is not the limit. Ocean and Coastal Management, 2021, 211, 105750.	2.0	8
35	Global typologies of coastal wetland status to inform conservation and management. Ecological Indicators, 2021, 131, 108141.	2.6	3
36	Improved Accuracy for Automated Counting of a Fish in Baited Underwater Videos for Stock Assessment. Frontiers in Marine Science, 2021, 8, .	1.2	19

#	Article	IF	CITATIONS
37	Conceptualizing ecosystem degradation using mangrove forests as a model system. Biological Conservation, 2021, 263, 109355.	1.9	17
38	Anthropogenic pressures and life history predict trajectories of seagrass meadow extent at a global scale. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	53
39	Key Ecological Function Peaks at the Land–Ocean Transition Zone When Vertebrate Scavengers Concentrate on Ocean Beaches. Ecosystems, 2020, 23, 906-916.	1.6	7
40	Critical gaps in seagrass protection reveal the need to address multiple pressures and cumulative impacts. Ocean and Coastal Management, 2020, 183, 104946.	2.0	63
41	Measuring perceived beauty of the Great Barrier Reef using eye-tracking technology. Current Issues in Tourism, 2020, 23, 2492-2502.	4.6	24
42	Landscape transformation alters functional diversity in coastal seascapes. Ecography, 2020, 43, 138-148.	2.1	43
43	Adaptation strategies for coral reef ecosystems in Small Island Developing States: Integrated modelling of local pressures and long-term climate changes. Journal of Cleaner Production, 2020, 253, 119864.	4.6	11
44	China's Belt and Road Initiative: Conservation opportunities for threatened marine species and habitats. Marine Policy, 2020, 112, 103791.	1.5	20
45	Stable isotopes indicate ecosystem restructuring following climateâ€driven mangrove dieback. Limnology and Oceanography, 2020, 65, 1251-1263.	1.6	16
46	Assessing methods for restoring seagrass (Zostera muelleri) in Australia's subtropical waters. Marine and Freshwater Research, 2020, 71, 996.	0.7	14
47	Global oxygen isoscapes for barnacle shells: Application for tracing movement in oceans. Science of the Total Environment, 2020, 705, 135782.	3.9	9
48	Low redundancy and complementarity shape ecosystem functioning in a lowâ€diversity ecosystem. Journal of Animal Ecology, 2020, 89, 784-794.	1.3	19
49	Indian Sundarbans mangrove forest considered endangered under Red List of Ecosystems, but there is cause for optimism. Biological Conservation, 2020, 251, 108751.	1.9	30
50	Being Well-Connected Pays in a Disturbed World: Enhanced Herbivory in Better-Linked Habitats. Diversity, 2020, 12, 424.	0.7	2
51	Artificial Intelligence Meets Citizen Science to Supercharge Ecological Monitoring. Patterns, 2020, 1, 100109.	3.1	31
52	Unique Post-telemetry Recapture Enables Development of Multi-Element Isoscapes From Barnacle Shell for Retracing Host Movement. Frontiers in Marine Science, 2020, 7, .	1.2	2
53	Diverse land uses and high coastal urbanisation do not always result in harmful environmental pollutants in fisheries species. Marine Pollution Bulletin, 2020, 159, 111487.	2.3	4
54	Dependency of Queensland and the Great Barrier Reef's tropical fisheries on reef-associated fish. Scientific Reports, 2020, 10, 17801.	1.6	6

#	Article	IF	CITATIONS
55	Seagrass Restoration Is Possible: Insights and Lessons From Australia and New Zealand. Frontiers in Marine Science, 2020, 7, .	1.2	83
56	The Differential Importance of Deep and Shallow Seagrass to Nekton Assemblages of the Great Barrier Reef. Diversity, 2020, 12, 292.	0.7	11
57	Fisheries rely on threatened salt marshes. Science, 2020, 370, 670-671.	6.0	33
58	Deep learning for automated analysis of fish abundance: the benefits of training across multiple habitats. Environmental Monitoring and Assessment, 2020, 192, 698.	1.3	22
59	Multi-scale estimation of the effects of pressures and drivers on mangrove forest loss globally. Biological Conservation, 2020, 247, 108637.	1.9	38
60	Integrating outcomes of IUCN red list of ecosystems assessments for connected coastal wetlands. Ecological Indicators, 2020, 116, 106489.	2.6	18
61	COVID-19 recovery can benefit biodiversity. Science, 2020, 368, 838-839.	6.0	35
62	Landscape context and nutrients modify the effects of coastal urbanisation. Marine Environmental Research, 2020, 158, 104936.	1.1	8
63	Metabolomic indicators for low-light stress in seagrass. Ecological Indicators, 2020, 114, 106316.	2.6	12
64	UN Decade on Ecosystem Restoration 2021–2030—What Chance for Success in Restoring Coastal Ecosystems?. Frontiers in Marine Science, 2020, 7, .	1.2	181
65	Automating the Analysis of Fish Abundance Using Object Detection: Optimizing Animal Ecology With Deep Learning. Frontiers in Marine Science, 2020, 7, .	1.2	91
66	Urbanisation and Fishing Alter the Body Size and Functional Traits of a Key Fisheries Species. Estuaries and Coasts, 2020, 43, 2170-2181.	1.0	3
67	The fox and the beach: Coastal landscape topography and urbanisation predict the distribution of carnivores at the edge of the sea. Global Ecology and Conservation, 2020, 23, e01071.	1.0	7
68	Mangroves give cause for conservation optimism, for now. Current Biology, 2020, 30, R153-R154.	1.8	127
69	Oil spill from the Era: Mangroves taking eons to recover. Marine Pollution Bulletin, 2020, 153, 110965.	2.3	18
70	Linking ecosystem condition and landscape context in the conservation of ecosystem multifunctionality. Biological Conservation, 2020, 243, 108479.	1.9	14
71	Global trends in mangrove forest fragmentation. Scientific Reports, 2020, 10, 7117.	1.6	154
72	Linking threat maps with management to guide conservation investment. Biological Conservation, 2020, 245, 108527.	1.9	27

#	Article	IF	CITATIONS
73	Saltmarsh grass supports fishery food webs in subtropical Australian estuaries. Estuarine, Coastal and Shelf Science, 2020, 238, 106719.	0.9	19
74	Climate drives the geography of marine consumption by changing predator communities. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28160-28166.	3.3	29
75	Stable isotopes track the ecological and biogeochemical legacy of mass mangrove forest dieback in the Gulf of Carpentaria, Australia. Biogeosciences, 2020, 17, 5599-5613.	1.3	6
76	Landscape context modifies the rate and distribution of predation around habitat restoration sites. Biological Conservation, 2019, 237, 97-104.	1.9	15
77	Tourists' aesthetic assessment of environmental changes, linking conservation planning to sustainable tourism development. Journal of Sustainable Tourism, 2019, 27, 1477-1494.	5.7	33
78	Habitat complexity influences the structure of food webs in Great Barrier Reef seagrass meadows. Ecosphere, 2019, 10, e02928.	1.0	17
79	The future of Blue Carbon science. Nature Communications, 2019, 10, 3998.	5.8	406
80	Australian vegetated coastal ecosystems as global hotspots for climate change mitigation. Nature Communications, 2019, 10, 4313.	5.8	150
81	Vulnerability of seagrass blue carbon to microbial attack following exposure to warming and oxygen. Science of the Total Environment, 2019, 686, 264-275.	3.9	42
82	The Role of Vegetated Coastal Wetlands for Marine Megafauna Conservation. Trends in Ecology and Evolution, 2019, 34, 807-817.	4.2	118
83	A hybrid is born: Integrating collective sensing, citizen science and professional monitoring of the environment. Ecological Informatics, 2019, 52, 35-45.	2.3	19
84	Distinguishing between sea turtle foraging areas using stable isotopes from commensal barnacle shells. Scientific Reports, 2019, 9, 6565.	1.6	16
85	Contrasting effects of mangroves and armoured shorelines on fish assemblages in tropical estuarine seascapes. ICES Journal of Marine Science, 2019, 76, 1052-1061.	1.2	24
86	Seascape context modifies how fish respond to restored oyster reef structures. ICES Journal of Marine Science, 2019, 76, 1131-1139.	1.2	25
87	Optimising Seagrass Conservation for Ecological Functions. Ecosystems, 2019, 22, 1368-1380.	1.6	12
88	The assessment of fishery status depends on fish habitats. Fish and Fisheries, 2019, 20, 1-14.	2.7	52
89	Oxygen Consumption and Sulfate Reduction in Vegetated Coastal Habitats: Effects of Physical Disturbance. Frontiers in Marine Science, 2019, 6, .	1.2	39
90	Effects of seascape connectivity on reserve performance along exposed coastlines. Conservation Biology, 2019, 33, 580-589.	2.4	18

#	Article	IF	CITATIONS
91	Using isotope labeling to partition sources of CO ₂ efflux in newly established mangrove seedlings. Limnology and Oceanography, 2018, 63, 731-740.	1.6	14
92	Spatially-explicit valuation of coastal wetlands for cyclone mitigation in Australia and China. Scientific Reports, 2018, 8, 3035.	1.6	35
93	Urbanisation supplements ecosystem functioning in disturbed estuaries. Ecography, 2018, 41, 2104-2113.	2.1	39
94	The ecology of fish in the surf zones of ocean beaches: A global review. Fish and Fisheries, 2018, 19, 78-89.	2.7	53
95	Spatial Restoration Ecology: Placing Restoration in a Landscape Context. BioScience, 2018, 68, 1007-1019.	2.2	50
96	Assessing fish abundance from underwater video using deep neural networks. , 2018, , .		38
97	Maximizing the benefits of oyster reef restoration for finfish and their fisheries. Fish and Fisheries, 2018, 19, 931-947.	2.7	61
98	Seagrass Dynamics and Resilience. , 2018, , 197-212.		6
99	The Role of Herbivory in Structuring Tropical Seagrass Ecosystem Service Delivery. Frontiers in Plant Science, 2018, 9, 127.	1.7	62
100	Highly Disturbed Populations of Seagrass Show Increased Resilience but Lower Genotypic Diversity. Frontiers in Plant Science, 2018, 9, 894.	1.7	34
101	Sources and fate of organic matter in constructed versus natural coastal waterways. Marine Pollution Bulletin, 2018, 135, 505-513.	2.3	5
102	Functional changes in reef systems in warmer seas: Asymmetrical effects of altered grazing by a widespread crustacean mesograzer. Science of the Total Environment, 2018, 644, 976-981.	3.9	5
103	Habitat proximity exerts opposing effects on key ecological functions. Landscape Ecology, 2018, 33, 1273-1286.	1.9	18
104	Functional plasticity in vertebrate scavenger assemblages in the presence of introduced competitors. Oecologia, 2018, 188, 583-593.	0.9	12
105	Seagrass meadows shape fish assemblages across estuarine seascapes. Marine Ecology - Progress Series, 2018, 588, 179-189.	0.9	51
106	The effects of shoreline armouring on estuarine fish are contingent upon the broader urbanisation context. Marine Ecology - Progress Series, 2018, 605, 195-206.	0.9	25
107	Identifying knowledge gaps in seagrass research and management: An Australian perspective. Marine Environmental Research, 2017, 127, 163-172.	1.1	68
108	The role of root decomposition in global mangrove and saltmarsh carbon budgets. Earth-Science Reviews, 2017, 166, 53-63.	4.0	103

#	Article	IF	CITATIONS
109	Can we manage coastal ecosystems to sequester more blue carbon?. Frontiers in Ecology and the Environment, 2017, 15, 206-213.	1.9	195
110	Algal subsidies enhance invertebrate prey for threatened shorebirds: A novel conservation tool on ocean beaches?. Estuarine, Coastal and Shelf Science, 2017, 191, 28-38.	0.9	34
111	Enhancing the performance of marine reserves in estuaries: Just add water. Biological Conservation, 2017, 210, 1-7.	1.9	28
112	Monitoring nitrogen pollution in seasonally-pulsed coastal waters requires judicious choice of indicator species. Marine Pollution Bulletin, 2017, 122, 149-155.	2.3	30
113	Subsistence harvesting by a small community does not substantially compromise coral reef fish assemblages. ICES Journal of Marine Science, 2017, 74, 2191-2200.	1.2	10
114	Carbon sequestration by Australian tidal marshes. Scientific Reports, 2017, 7, 44071.	1.6	112
115	Umbrellas can work under water: Using threatened species as indicator and management surrogates can improve coastal conservation. Estuarine, Coastal and Shelf Science, 2017, 199, 132-140.	0.9	41
116	Monitoring the environment and human sentiment on the Great Barrier Reef: Assessing the potential of collective sensing. Journal of Environmental Management, 2017, 203, 87-97.	3.8	79
117	Using growth rates to estimate age of the sea turtle barnacle Chelonibia testudinaria. Marine Biology, 2017, 164, 1.	0.7	13
118	Biogeochemical Cycles: Global Approaches and Perspectives. , 2017, , 163-209.		16
119	Species traits and connectivity constrain stochastic community re-assembly. Scientific Reports, 2017, 7, 14424.	1.6	5
120	Global patterns in mangrove soil carbon stocks and losses. Nature Climate Change, 2017, 7, 523-528.	8.1	412
121	Prioritising seascape connectivity in conservation using network analysis. Journal of Applied Ecology, 2017, 54, 1130-1141.	1.9	57
122	Structural equation modelling reveals factors regulating surface sediment organic carbon content and CO2 efflux in a subtropical mangrove. Science of the Total Environment, 2017, 578, 513-522.	3.9	42
123	Fish Biomass in Tropical Estuaries: Substantial Variation in Food Web Structure, Sources of Nutrition and Ecosystem-Supporting Processes. Estuaries and Coasts, 2017, 40, 580-593.	1.0	9
124	Marine reserves and seascape context shape fish assemblages in seagrass ecosystems. Marine Ecology - Progress Series, 2017, 566, 135-144.	0.9	31
125	Habitat type and beach exposure shape fish assemblages in the surf zones of ocean beaches. Marine Ecology - Progress Series, 2017, 570, 203-211.	0.9	38
126	Seagrass corridors and tidal state modify how fish use habitats on intertidal coral reef flats. Marine Ecology - Progress Series, 2017, 581, 135-147.	0.9	7

#	Article	IF	CITATIONS
127	Realignment of sea turtle isotope studies needed to match conservation priorities. Marine Ecology - Progress Series, 2017, 583, 259-271.	0.9	26
128	Patterns and trends in marine population connectivity research. Marine Ecology - Progress Series, 2017, 585, 243-256.	0.9	44
129	The Early Shorebird Will Catch Fewer Invertebrates on Trampled Sandy Beaches. PLoS ONE, 2016, 11, e0161905.	1.1	37
130	Resource type influences the effects of reserves and connectivity on ecological functions. Journal of Animal Ecology, 2016, 85, 437-444.	1.3	14
131	Assessing temporal and spatial trends in estuarine nutrient dynamics using a multi-species stable isotope approach. Ecological Indicators, 2016, 67, 338-345.	2.6	15
132	Estimating animal populations and body sizes from burrows: Marine ecologists have their heads buried in the sand. Journal of Sea Research, 2016, 112, 55-64.	0.6	36
133	Combined effects of urbanization and connectivity on iconic coastal fishes. Diversity and Distributions, 2016, 22, 1328-1341.	1.9	44
134	Quantifying the conservation value of seascape connectivity: a global synthesis. Global Ecology and Biogeography, 2016, 25, 3-15.	2.7	123
135	Functional replacement across species pools of vertebrate scavengers separated at a continental scale maintains an ecosystem function. Functional Ecology, 2016, 30, 998-1005.	1.7	25
136	Human threats to sandy beaches: A meta-analysis of ghost crabs illustrates global anthropogenic impacts Estuarine, Coastal and Shelf Science, 2016, 169, 56-73.	0.9	108
137	Optimising Land-Sea Management for Inshore Coral Reefs. PLoS ONE, 2016, 11, e0164934.	1.1	20
138	Regional drivers of clutch loss reveal important trade-offs for beach-nesting birds. PeerJ, 2016, 4, e2460.	0.9	19
139	Edging along a Warming Coast: A Range Extension for a Common Sandy Beach Crab. PLoS ONE, 2015, 10, e0141976.	1.1	26
140	Stable isotopes as tracers of residency for fish on inshore coral reefs. Estuarine, Coastal and Shelf Science, 2015, 167, 368-376.	0.9	16
141	Golden opportunities: A horizon scan to expand sandy beach ecology. Estuarine, Coastal and Shelf Science, 2015, 157, 1-6.	0.9	47
142	Identifying habitats at risk: simple models can reveal complex ecosystem dynamics. Ecological Applications, 2015, 25, 573-587.	1.8	52
143	Community structure and dietary pathways for invertebrates on intertidal coral reef flats. Food Webs, 2015, 3, 7-16.	0.5	7
144	Invasive carnivores alter ecological function and enhance complementarity in scavenger assemblages on ocean beaches. Ecology, 2015, 96, 2715-2725.	1.5	49

#	Article	IF	CITATIONS
145	Predators help protect carbon stocks in blue carbon ecosystems. Nature Climate Change, 2015, 5, 1038-1045.	8.1	181
146	Spatial analysis of carbon isotopes reveals seagrass contribution to fishery food web. Ecosphere, 2015, 6, 1-12.	1.0	36
147	The seascape nursery: a novel spatial approach to identify and manage nurseries for coastal marine fauna. Fish and Fisheries, 2015, 16, 362-371.	2.7	367
148	Conservation gone to the dogs: when canids rule the beach in small coastal reserves. Biodiversity and Conservation, 2015, 24, 493-509.	1.2	37
149	Limited functional redundancy in vertebrate scavenger guilds fails to compensate for the loss of raptors from urbanized sandy beaches. Diversity and Distributions, 2015, 21, 55-63.	1.9	55
150	Conservation Benefits of Marine Reserves are Undiminished Near Coastal Rivers and Cities. Conservation Letters, 2015, 8, 312-319.	2.8	23
151	Importance of Mangrove Carbon for Aquatic Food Webs in Wet–Dry Tropical Estuaries. Estuaries and Coasts, 2015, 38, 383-399.	1.0	63
152	True Value of Estuarine and Coastal Nurseries for Fish: Incorporating Complexity and Dynamics. Estuaries and Coasts, 2015, 38, 401-414.	1.0	312
153	Effective protection of fish on inshore coral reefs depends on the scale of mangrove-reef connectivity. Marine Ecology - Progress Series, 2015, 527, 157-165.	0.9	32
154	Seascape-scale trophic links for fish on inshore coral reefs. Coral Reefs, 2014, 33, 897-907.	0.9	39
155	Mechanisms and ecological role of carbon transfer within coastal seascapes. Biological Reviews, 2014, 89, 232-254.	4.7	166
156	Phenotypic plasticity promotes persistence following severe events: physiological and morphological responses of seagrass to flooding. Journal of Ecology, 2014, 102, 54-64.	1.9	78
157	Incorporating Surrogate Species and Seascape Connectivity to Improve Marine Conservation Outcomes. Conservation Biology, 2014, 28, 982-991.	2.4	43
158	Metrics to assess ecological condition, change, and impacts in sandy beach ecosystems. Journal of Environmental Management, 2014, 144, 322-335.	3.8	65
159	Marine reserves help coastal ecosystems cope with extreme weather. Global Change Biology, 2014, 20, 3050-3058.	4.2	59
160	Effects of acid treatment on carbon and nitrogen stable isotope ratios in ecological samples: a review and synthesis. Methods in Ecology and Evolution, 2014, 5, 541-550.	2.2	123
161	Moreton Bay and Its Estuaries: A Sub-tropical System Under Pressure from Rapid Population Growth. Estuaries of the World, 2014, , 203-222.	0.1	28
162	Effects of freshwater flow extremes on intertidal biota of a wet-dry tropical estuary. Marine Ecology - Progress Series, 2014, 502, 11-23.	0.9	19

#	Article	IF	CITATIONS
163	Herbivory in a subtropical seagrass ecosystem: separating the functional role of different grazers. Marine Ecology - Progress Series, 2014, 511, 83-91.	0.9	30
164	Sympatric seagrass shrimp show similar structure and selection along the seashore: a comparison of two cryptic <i>Phycomenes zostericola</i> lineages. Marine Ecology, 2013, 34, 30-42.	0.4	2
165	Urbanisation alters processing of marine carrion on sandy beaches. Landscape and Urban Planning, 2013, 119, 1-8.	3.4	80
166	Nursery Function Drives Temporal Patterns in Fish Assemblage Structure in Four Tropical Estuaries. Estuaries and Coasts, 2013, 36, 893-905.	1.0	18
167	Artificial tidal lakes: Built for humans, home for fish. Ecological Engineering, 2013, 60, 414-420.	1.6	19
168	Performance of non-native species within marine reserves. Biological Invasions, 2013, 15, 17-28.	1.2	48
169	Use of flathead mullet (Mugil cephalus) in coastal biomonitor studies: Review and recommendations for future studies. Marine Pollution Bulletin, 2013, 69, 195-205.	2.3	31
170	Multiple scavengers respond rapidly to pulsed carrion resources at the land–ocean interface. Acta Oecologica, 2013, 48, 7-12.	0.5	68
171	Mangroveâ€reef connectivity promotes the effectiveness of marine reserves across the western <scp>P</scp> acific. Global Ecology and Biogeography, 2013, 22, 1040-1049.	2.7	58
172	High congruence of isotope sewage signals in multiple marine taxa. Marine Pollution Bulletin, 2013, 71, 152-158.	2.3	46
173	Donor-Control of Scavenging Food Webs at the Land-Ocean Interface. PLoS ONE, 2013, 8, e68221.	1.1	40
174	Setback Distances as a Conservation Tool in Wildlife-Human Interactions: Testing Their Efficacy for Birds Affected by Vehicles on Open-Coast Sandy Beaches. PLoS ONE, 2013, 8, e71200.	1.1	47
175	Science to Support Management of Receiving Waters in an Event-Driven Ecosystem: From Land to River to Sea. Water (Switzerland), 2013, 5, 780-797.	1.2	39
176	Sample acidification significantly alters stable isotope ratios of sulfur in aquatic plants and animals. Marine Ecology - Progress Series, 2013, 493, 1-8.	0.9	24
177	Fish assemblages as indicators of estuary ecosystem health. Wetlands Ecology and Management, 2012, 20, 477-490.	0.7	46
178	Both size and gender of mud crabs influence the outcomes of interference interactions. Journal of Experimental Marine Biology and Ecology, 2012, 434-435, 1-6.	0.7	8
179	Combining process indices from network analysis with structural population measures to indicate response of estuarine trophodynamics to pulse organic enrichment. Ecological Indicators, 2012, 18, 652-658.	2.6	7
180	Synergistic effects of reserves and connectivity on ecological resilience. Journal of Applied Ecology, 2012, 49, 1195-1203.	1.9	109

#	Article	IF	CITATIONS
181	Importance of estuarine mangroves to juvenile banana prawns. Estuarine, Coastal and Shelf Science, 2012, 114, 208-219.	0.9	29
182	Habitat connectivity improves reserve performance. Conservation Letters, 2012, 5, 56-63.	2.8	128
183	Primacy of seascape connectivity effects in structuring coral reef fish assemblages. Marine Ecology - Progress Series, 2012, 462, 191-203.	0.9	100
184	Contaminants in water, sediment and fish biomonitor species from natural and artificial estuarine habitats along the urbanized Gold Coast, Queensland. Journal of Environmental Monitoring, 2011, 13, 3409.	2.1	29
185	Combining stable isotope enrichment, compartmental modelling and ecological network analysis for quantitative measurement of food web dynamics. Methods in Ecology and Evolution, 2011, 2, 56-65.	2.2	13
186	Fineâ€scale spatial and temporal variations in diets of the pipefish <i>Stigmatopora nigra</i> within seagrass patches. Journal of Fish Biology, 2011, 78, 1824-1832.	0.7	6
187	Edge effects in patchy seagrass landscapes: The role of predation in determining fish distribution. Journal of Experimental Marine Biology and Ecology, 2011, 399, 8-16.	0.7	88
188	Short-term response of estuarine sandflat trophodynamics to pulse anthropogenic physical disturbance: Support for the Intermediate Disturbance Hypothesis. Estuarine, Coastal and Shelf Science, 2011, 92, 639-648.	0.9	7
189	Clobal extent and distribution of artificial, residential waterways in estuaries. Estuarine, Coastal and Shelf Science, 2011, 94, 192-197.	0.9	60
190	Response of fauna in seagrass to habitat edges, patch attributes and hydrodynamics. Austral Ecology, 2010, 35, 535-543.	0.7	11
191	Shortâ€ŧerm differences in animal assemblages in patches formed by loss and growth of habitat. Austral Ecology, 2010, 35, 515-521.	0.7	13
192	lsotope enrichment in mangrove forests separates microphytobenthos and detritus as carbon sources for animals. Limnology and Oceanography, 2010, 55, 393-402.	1.6	50
193	Seagrass patch size affects fish responses to edges. Journal of Animal Ecology, 2010, 79, 275-281.	1.3	36
194	Little shrimp left on the shelf: the roles that seaâ€level change, ocean currents and continental shelf width play in the genetic connectivity of a seagrassâ€associated species. Journal of Biogeography, 2010, 37, 1570-1583.	1.4	8
195	Temporal dynamics of fish assemblages of natural and artificial tropical estuaries. Marine Ecology - Progress Series, 2010, 410, 143-157.	0.9	40
196	Resource distribution influences positive edge effects in a seagrass fish. Ecology, 2010, 91, 2013-2021.	1.5	68
197	Edge patterns in aquatic invertebrates explained by predictive models. Marine and Freshwater Research, 2010, 61, 214.	0.7	25
198	Stable isotope evidence for trophic subsidy of coastal benthic fisheries by river discharge plumes off small estuaries. Marine Biology Research, 2009, 5, 164-171.	0.3	52

#	Article	IF	CITATIONS
199	Redistribution of sewage-nitrogen in estuarine food webs following sewage treatment upgrades. Marine Pollution Bulletin, 2009, 58, 573-580.	2.3	42
200	Land–Ocean Coupling of Carbon and Nitrogen Fluxes on Sandy Beaches. Ecosystems, 2009, 12, 311-321.	1.6	65
201	Integrating edge effects into studies of habitat fragmentation: a test using meiofauna in seagrass. Oecologia, 2009, 159, 883-892.	0.9	35
202	Can export of organic matter from estuaries support zooplankton in nearshore, marine plumes?. Aquatic Ecology, 2009, 43, 383-393.	0.7	39
203	Stable isotope and fatty acid tracers in energy and nutrient studies of jellyfish: a review. Hydrobiologia, 2009, 616, 119-132.	1.0	62
204	Habitat selectivity of megalopae and juvenile mud crabs (Scylla serrata): implications for recruitment mechanism. Marine Biology, 2009, 156, 891-899.	0.7	34
205	Fish Responses to Experimental Fragmentation of Seagrass Habitat. Conservation Biology, 2009, 23, 644-652.	2.4	65
206	Carbon Exchange Among Tropical Coastal Ecosystems. , 2009, , 45-70.		42
207	Coupling between Marine Plankton and Freshwater Flow in the Plumes off a Small Estuary. International Review of Hydrobiology, 2008, 93, 641-658.	0.5	24
208	Opportunistic predation by small fishes on epibiota of jetty pilings in urban waterways. Journal of Fish Biology, 2008, 72, 205-217.	0.7	28
209	Predation by jellyfish on large and emergent zooplankton: Implications for benthic–pelagic coupling. Estuarine, Coastal and Shelf Science, 2008, 76, 827-833.	0.9	65
210	Organic matter exchange and cycling in mangrove ecosystems: Recent insights from stable isotope studies. Journal of Sea Research, 2008, 59, 44-58.	0.6	343
211	Stable isotope and fatty acid tracers in energy and nutrient studies of jellyfish: a review. , 2008, , 119-132.		4
212	Edge effects on fish associated with seagrass and sand patches. Marine Ecology - Progress Series, 2008, 359, 203-213.	0.9	73
213	Patterns of small fish distributions in seagrass beds in a temperate Australian estuary. Journal of the Marine Biological Association of the United Kingdom, 2007, 87, 1297-1307.	0.4	34
214	Artificial waterway design affects fish assemblages in urban estuaries. Journal of Fish Biology, 2007, 71, 1613-1629.	0.7	24
215	Estuarine fish health assessment: Evidence of wastewater impacts based on nitrogen isotopes and histopathology. Marine Pollution Bulletin, 2007, 54, 1762-1776.	2.3	65
216	Vertical movement of mud crab megalopae (Scylla serrata) in response to light: Doing it differently down under. Journal of Experimental Marine Biology and Ecology, 2007, 341, 196-203.	0.7	20

#	Article	IF	CITATIONS
217	Fish assemblages in seagrass beds are influenced by the proximity of mangrove forests. Marine Biology, 2007, 150, 993-1002.	0.7	68
218	Food sources of the sergestid crustacean, Acetes sibogae, in shrimp ponds. Aquaculture, 2006, 259, 222-233.	1.7	4
219	Impact of urbanization on coastal wetland structure and function. Austral Ecology, 2006, 31, 149-163.	0.7	298
220	Effects of water exchange and abiotic factors on zooplankton and epibenthic fauna in shrimp ponds. Aquaculture Research, 2006, 37, 1387-1399.	0.9	3
221	Mechanism for the small-scale movement of carbon among estuarine habitats: organic matter transfer not crab movement. Oecologia, 2006, 148, 88-96.	0.9	45
222	Trophic strategies of garfish, Arrhamphus sclerolepis, in natural coastal wetlands and artificial urban waterways. Marine Biology, 2006, 148, 1135-1141.	0.7	26
223	Review of nekton patterns and ecological processes in seagrass landscapes. Estuarine, Coastal and Shelf Science, 2006, 68, 433-444.	0.9	89
224	Flood discharges of a small river into open coastal waters: Plume traits and material fate. Estuarine, Coastal and Shelf Science, 2006, 69, 4-9.	0.9	50
225	Feeding by fish visiting inundated subtropical saltmarsh. Journal of Experimental Marine Biology and Ecology, 2006, 336, 88-98.	0.7	60
226	Movement of carbon among estuarine habitats: the influence of saltmarsh patch size. Marine Ecology - Progress Series, 2006, 310, 15-24.	0.9	18
227	Edge effects and patch size in seagrass landscapes: an experimental test using fish. Marine Ecology - Progress Series, 2006, 319, 93-102.	0.9	49
228	Local-scale mapping of benthic habitats to assess representation in a marine protected area. Marine and Freshwater Research, 2005, 56, 111.	0.7	50
229	Measuring carbon isotope ratios of microphytobenthos using compoundâ€specific stable isotope analysis of phytol. Limnology and Oceanography: Methods, 2005, 3, 511-519.	1.0	11
230	Fishes associated with artificial reefs: attributing changes to attraction or production using novel approaches. Journal of Fish Biology, 2005, 67, 53-71.	0.7	120
231	Prawn landings and their relationship with the extent of mangroves and shallow waters in western peninsular Malaysia. Estuarine, Coastal and Shelf Science, 2005, 63, 187-200.	0.9	39
232	Food webs supporting fish over subtropical mudflats are based on transported organic matter not in situ microalgae. Marine Biology, 2005, 148, 363-371.	0.7	58
233	Fine-scale movement and assimilation of carbon in saltmarsh and mangrove habitat by resident animals. Aquatic Ecology, 2005, 38, 599-609.	0.7	14
234	Movement of carbon among estuarine habitats and its assimilation by invertebrates. Oecologia, 2005, 144, 684-691.	0.9	91

#	Article	IF	CITATIONS
235	Modification of saltmarsh for mosquito control in Australia alters habitat use by nekton. Wetlands Ecology and Management, 2005, 13, 149-161.	0.7	19
236	Seagrass and epiphytic algae support nutrition of a fisheries species, Sillago schomburgkii, in adjacent intertidal habitats. Marine Ecology - Progress Series, 2005, 286, 69-79.	0.9	178
237	Causes of sulfur isotope variability in the seagrass, Zostera capricorni. Journal of Experimental Marine Biology and Ecology, 2004, 302, 153-164.	0.7	33
238	Densities and aperture sizes of burrows constructed by Helograpsus haswellianus (decapoda:) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 622
239	Sulfur stable isotopes separate producers in marine food-web analysis. Oecologia, 2004, 138, 161-167.	0.9	179
240	Fine-scale movement and assimilation of carbon in saltmarsh and mangrove habitat by resident animals. Aquatic Ecology, 2004, 38, 599-609.	0.7	55
241	Consolidation and volumetric soil-water content of salt marsh soils following habitat modification for mosquito control. Wetlands Ecology and Management, 2004, 12, 333-342.	0.7	4
242	Testing the utility of abiotic surrogates for marine habitat mapping at scales relevant to management. Biological Conservation, 2004, 119, 351-362.	1.9	114
243	Within and among-site variability in δ and δ for three estuarine producers, Sporobolus virginicus, Zostera capricorni, and epiphytes of Z. capricorni. Aquatic Botany, 2004, 79, 87-94.	0.8	24
244	Carbon movement and assimilation by invertebrates in estuarine habitats at a scale of metres. Marine Ecology - Progress Series, 2004, 278, 27-34.	0.9	75
245	Growth and Reproduction of Double-Ended Pipefish, Syngnathoides biaculeatus, in Moreton Bay, Queensland, Australia. Environmental Biology of Fishes, 2003, 67, 23-33.	0.4	23
246	Spatial analysis of stable isotope data to determine primary sources of nutrition for fish. Oecologia, 2003, 136, 499-507.	0.9	162
247	Mangrove distribution and mosquito control: transport of Avicennia marina propagules by mosquito-control runnels in southeast Queensland saltmarshes. Estuarine, Coastal and Shelf Science, 2003, 56, 573-579.	0.9	32
949	Differences in trophodynamics of commercially important fish between artificial waterways and	0.0	41

248Differences in tropinouynamics of commercially important hisr between artificial waterways and
natural coastal wetlands. Estuarine, Coastal and Shelf Science, 2003, 58, 929-936.0.941249Zooplankton and epibenthic fauna in shrimp ponds: factors influencing assemblage dynamics.
Aquaculture Research, 2003, 34, 359-371.0.926250Seine nets and beam trawls compared by day and night for sampling fish and crustaceans in shallow
seagrass habitat. Fisheries Research, 2003, 64, 185-196.0.983251Title is missing!. Marine and Freshwater Research, 2002, 53, 777.0.731

Phylogeography of the pipefish, Urocampus carinirostris, suggests secondary intergradation of
ancient lineages. Marine Biology, 2002, 141, 541-547.

#	Article	IF	CITATIONS
253	Variability of, and the influence of environmental factors on, the recruitment of postlarval and juvenile Penaeus merguiensis in the Matang mangroves of Malaysia. Marine Biology, 2002, 141, 241-251.	0.7	19
254	Patterns of movement and habitat use by leafy seadragons tracked ultrasonically. Journal of Fish Biology, 2002, 61, 684-695.	0.7	25
255	Patterns of movement and habitat use by leafy seadragons tracked ultrasonically. Journal of Fish Biology, 2002, 61, 684-695.	0.7	1
256	Fish use of subtropical saltmarshes in Queensland, Australia: relationships with vegetation, water depth and distance onto the marsh. Marine Ecology - Progress Series, 2001, 209, 275-288.	0.9	76
257	Large-scale seagrass dieback in northern Spencer Gulf, South Australia. Aquatic Botany, 2000, 66, 297-310.	0.8	106
258	Saltmarsh as habitat for fish and nektonic crustaceans: Challenges in sampling designs and methods. Austral Ecology, 1999, 24, 422-430.	0.7	42
259	15N enrichment as a method of separating the isotopic signatures of seagrass and its epiphytes for food web analysis. Marine Ecology - Progress Series, 1999, 189, 289-294.	0.9	31
260	Assemblages of sessile marine invertebrates:still changing after all these years?. Marine Ecology - Progress Series, 1999, 182, 109-118.	0.9	36
261	Fish use of an inundated saltmarsh flat in a temperate Australian estuary. Austral Ecology, 1997, 22, 222-226.	0.7	42
262	Title is missing!. , 1997, 346, 137-148.		66
263	Development and long term dynamics of a fouling assemblage of sessile marine invertebrates. Biofouling, 1996, 9, 187-209.	0.8	40
264	The Effects of Altering Seagrass Canopy Height on Small, Motile Invertebrates of Shallow Mediterranean Embayments. Marine Ecology, 1996, 17, 637-652.	0.4	17
265	Effects of removal of seagrass canopy on assemblages of small, motile invertebrates. Marine Ecology - Progress Series, 1995, 118, 129-137.	0.9	30
266	The role of seagrass as preferred habitat for juvenile sillaginodes punctata (cuv. & val.) (sillaginidae,) Tj ETQq0 0 0 39-47.	rgBT 0.7	Overlock 10 Tf 5 53
267	Removal of seagrass canopy: effects on small fish and their prey. Journal of Experimental Marine Biology and Ecology, 1994, 184, 99-110.	0.7	95
268	A comparison of fish assemblages from seagrass and unvegetated areas of a southern Australian estuary. Marine and Freshwater Research, 1994, 45, 1033.	0.7	152
269	Seafloor Terrain Shapes the Three-dimensional Nursery Value of Mangrove and Seagrass Habitats. Ecosystems, 0, , .	1.6	4
270	Some Like it Hot: The Ecology, Ecosystem Benefits and Restoration Potential of Oyster Reefs in Tropical Waters. Frontiers in Marine Science, 0, 9, .	1.2	10