
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5853252/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Editing gene families by CRISPR/Cas9: accelerating the isolation of multiple transgeneâ€free null mutant combinations with much reduced laborâ€intensive analysis. Plant Biotechnology Journal, 2022, 20, 241-243.	4.1	7
2	Local conjugation of auxin by the GH3 amido synthetases is required for normal development of roots and flowers in Arabidopsis. Biochemical and Biophysical Research Communications, 2022, 589, 16-22.	1.0	13
3	Updates on gene editing and its applications. Plant Physiology, 2022, 188, 1725-1730.	2.3	15
4	<i>Plant Physiology</i> : a new editorial team and exciting initiatives. Plant Physiology, 2022, , .	2.3	1
5	Advances in gene editing without residual transgenes in plants. Plant Physiology, 2022, 188, 1757-1768.	2.3	24
6	<i>Plant Physiology</i> welcomes 13 new Assistant Features Editors. Plant Physiology, 2022, 188, 919-920.	2.3	1
7	Plant biology: Local auxin synthesis drives pollen maturation in barley. Current Biology, 2022, 32, R370-R372.	1.8	2
8	<i>Plant Physiology</i> is recruiting Assistant Features Editors for 2023. Plant Physiology, 2022, , .	2.3	0
9	An <scp>amiRNA</scp> screen uncovers redundant <scp>CBF</scp> and <scp>ERF34</scp> /35 transcription factors that differentially regulate arsenite and cadmium responses. Plant, Cell and Environment, 2021, 44, 1692-1706.	2.8	19
10	Cell kinetics of auxin transport and activity in Arabidopsis root growth and skewing. Nature Communications, 2021, 12, 1657.	5.8	30
11	PIEZO ion channel is required for root mechanotransduction in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	65
12	Plant Physiology is recruiting Assistant Features Editors for 2022. Plant Physiology, 2021, 187, 31-31.	2.3	1
13	Natural allelic variation in a modulator of auxin homeostasis improves grain yield and nitrogen use efficiency in rice. Plant Cell, 2021, 33, 566-580.	3.1	53
14	The main oxidative inactivation pathway of the plant hormone auxin. Nature Communications, 2021, 12, 6752.	5.8	85
15	Synergistic roles of LAX1 and FZP in the development of rice sterile lemma. Crop Journal, 2020, 8, 16-25.	2.3	4
16	Positional effects on efficiency of CRISPR/Cas9-based transcriptional activation in rice plants. ABIOTECH, 2020, 1, 1-5.	1.8	13
17	MAP3Kinase-dependent SnRK2-kinase activation is required for abscisic acid signal transduction and rapid osmotic stress response. Nature Communications, 2020, 11, 12.	5.8	202
18	Technological breakthroughs in generating transgene-free and genetically stable CRISPR-edited plants. ABIOTECH, 2020, 1, 88-96.	1.8	57

#	Article	IF	CITATIONS
19	Repurposing of Anthocyanin Biosynthesis for Plant Transformation and Genome Editing. Frontiers in Genome Editing, 2020, 2, 607982.	2.7	14
20	A reporter for noninvasively monitoring gene expression and plant transformation. Horticulture Research, 2020, 7, 152.	2.9	103
21	Non-intrinsic ATP-binding cassette proteins ABCI19, ABCI20 and ABCI21 modulate cytokinin response at the endoplasmic reticulum in Arabidopsis thaliana. Plant Cell Reports, 2020, 39, 473-487.	2.8	16
22	Two homologous INDOLE-3-ACETAMIDE (IAM) HYDROLASE genes are required for the auxin effects of IAM in Arabidopsis. Journal of Genetics and Genomics, 2020, 47, 157-165.	1.7	22
23	Update on Receptors and Signaling. Plant Physiology, 2020, 182, 1527-1530.	2.3	20
24	Role of ArabidopsisÂINDOLE-3-ACETIC ACID CARBOXYL METHYLTRANSFERASE 1Âin auxin metabolism. Biochemical and Biophysical Research Communications, 2020, 527, 1033-1038.	1.0	12
25	UDP-glucosyltransferase UGT84B1 regulates the levels of indole-3-acetic acid and phenylacetic acid in Arabidopsis. Biochemical and Biophysical Research Communications, 2020, 532, 244-250.	1.0	21
26	Homeobox transcription factor OsZHD2 promotes root meristem activity in rice by inducing ethylene biosynthesis. Journal of Experimental Botany, 2020, 71, 5348-5364.	2.4	24
27	Editorial: Organ Modification for Edible Parts of Horticultural Crops. Frontiers in Plant Science, 2019, 10, 961.	1.7	0
28	Gibberellins Play a Role in Regulating Tomato Fruit Ripening. Plant and Cell Physiology, 2019, 60, 1619-1629.	1.5	41
29	Precise gene replacement in rice by RNA transcript-templated homologous recombination. Nature Biotechnology, 2019, 37, 445-450.	9.4	110
30	<i>PINOID</i> Is Required for Formation of the Stigma and Style in Rice. Plant Physiology, 2019, 180, 926-936.	2.3	30
31	An Essential Role for miRNA167 in Maternal Control of Embryonic and Seed Development. Plant Physiology, 2019, 180, 453-464.	2.3	61
32	The plant ESCRT component FREE1 shuttles to the nucleus to attenuate abscisic acid signalling. Nature Plants, 2019, 5, 512-524.	4.7	68
33	Plant genome editing using xCas9 with expanded PAM compatibility. Journal of Genetics and Genomics, 2019, 46, 277-280.	1.7	24
34	<i>Agrobacterium tumefaciens</i> Enhances Biosynthesis of Two Distinct Auxins in the Formation of Crown Galls. Plant and Cell Physiology, 2019, 60, 29-37.	1.5	39
35	ESCRTâ€dependent vacuolar sorting and degradation of the auxin biosynthetic enzyme YUC1 flavin monooxygenase. Journal of Integrative Plant Biology, 2019, 61, 968-973.	4.1	9
36	Fluorescence Marker-Assisted Isolation of Cas9-Free and CRISPR-Edited Arabidopsis Plants. Methods in Molecular Biology, 2019, 1917, 147-154.	0.4	22

#	Article	IF	CITATIONS
37	Modulation of Auxin Signaling and Development by Polyadenylation Machinery. Plant Physiology, 2019, 179, 686-699.	2.3	15
38	Essential Roles of Local Auxin Biosynthesis in Plant Development and in Adaptation to Environmental Changes. Annual Review of Plant Biology, 2018, 69, 417-435.	8.6	218
39	A method for the production and expedient screening of CRISPR/Cas9-mediated non-transgenic mutant plants. Horticulture Research, 2018, 5, 13.	2.9	148
40	Efficient allelic replacement in rice by gene editing: A case study of the <i>NRT1.1B</i> gene. Journal of Integrative Plant Biology, 2018, 60, 536-540.	4.1	68
41	TCP Transcription Factors Regulate Shade Avoidance via Directly Mediating the Expression of Both <i>PHYTOCHROME INTERACTING FACTOR</i> s and Auxin Biosynthetic Genes. Plant Physiology, 2018, 176, 1850-1861.	2.3	65
42	Expanding the Scope of CRISPR/Cpf1-Mediated Genome Editing in Rice. Molecular Plant, 2018, 11, 995-998.	3.9	87
43	Recent advances in auxin research in rice and their implications for crop improvement. Journal of Experimental Botany, 2018, 69, 255-263.	2.4	65
44	Editorial: Hormonal Control of Important Agronomic Traits. Frontiers in Plant Science, 2018, 9, 1504.	1.7	3
45	Programmed Self-Elimination of the CRISPR/Cas9 Construct Greatly Accelerates the Isolation of Edited and Transgene-Free Rice Plants. Molecular Plant, 2018, 11, 1210-1213.	3.9	159
46	Auxin production in diploid microsporocytes is necessary and sufficient for early stages of pollen development. PLoS Genetics, 2018, 14, e1007397.	1.5	63
47	Synthesis-dependent repair of Cpf1-induced double strand DNA breaks enables targeted gene replacement in rice. Journal of Experimental Botany, 2018, 69, 4715-4721.	2.4	70
48	The YUCCA-Auxin-WOX11 Module Controls Crown Root Development in Rice. Frontiers in Plant Science, 2018, 9, 523.	1.7	95
49	Generation of Targeted Point Mutations in Rice by a Modified CRISPR/Cas9 System. Molecular Plant, 2017, 10, 526-529.	3.9	272
50	On Improving CRISPR for Editing Plant Genes: Ribozyme-Mediated Guide RNA Production and Fluorescence-Based Technology for Isolating Transgene-Free Mutants Generated by CRISPR. Progress in Molecular Biology and Translational Science, 2017, 149, 151-166.	0.9	25
51	Self-cleaving ribozymes enable the production of guide RNAs from unlimited choices of promoters for CRISPR/Cas9 mediated genome editing. Journal of Genetics and Genomics, 2017, 44, 469-472.	1.7	82
52	Revolutionize Genetic Studies and Crop Improvement with High-Throughput and Genome-Scale CRISPR/Cas9 Gene Editing Technology. Molecular Plant, 2017, 10, 1141-1143.	3.9	19
53	Production of Guide RNAs in vitro and in vivo for CRISPR Using Ribozymes and RNA Polymerase II Promoters. Bio-protocol, 2017, 7, .	0.2	27
54	Generation of High-Amylose Rice through CRISPR/Cas9-Mediated Targeted Mutagenesis of Starch Branching Enzymes. Frontiers in Plant Science, 2017, 8, 298.	1.7	348

#	Article	IF	CITATIONS
55	An Effective Strategy for Reliably Isolating Heritable and <i>Cas9</i> -Free Arabidopsis Mutants Generated by CRISPR/Cas9-Mediated Genome Editing. Plant Physiology, 2016, 171, 1794-1800.	2.3	225
56	Auxin perception and downstream events. Current Opinion in Plant Biology, 2016, 33, 8-14.	3.5	77
57	Molecular basis for differential light responses in Arabidopsis stems and leaves. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5774-5776.	3.3	5
58	Overexpression of the bacterial tryptophan oxidase RebO affects auxin biosynthesis and Arabidopsis development. Science Bulletin, 2016, 61, 859-867.	4.3	23
59	The Auxin-Deficient Defective Kernel18 (dek18) Mutation Alters the Expression of Seed-Specific Biosynthetic Genes in Maize. Journal of Plant Growth Regulation, 2016, 35, 770-777.	2.8	18
60	Toward a Molecular Understanding of Plant Hormone Actions. Molecular Plant, 2016, 9, 1-3.	3.9	7
61	Engineering Herbicide-Resistant Rice Plants through CRISPR/Cas9-Mediated Homologous Recombination of Acetolactate Synthase. Molecular Plant, 2016, 9, 628-631.	3.9	416
62	Embryonic lethality of Arabidopsis abp1-1 is caused by deletion of the adjacent BSM gene. Nature Plants, 2015, 1, .	4.7	33
63	Os <scp>ARID</scp> 3, an <scp>AT</scp> â€rich Interaction Domainâ€containing protein, is required for shoot meristem development in rice. Plant Journal, 2015, 83, 806-817.	2.8	15
64	Fast-Suppressor Screening for New Components in Protein Trafficking, Organelle Biogenesis and Silencing Pathway in Arabidopsis thaliana Using DEX-Inducible FREE1-RNAi Plants. Journal of Genetics and Genomics, 2015, 42, 319-330.	1.7	18
65	Auxin binding protein 1 (ABP1) is not required for either auxin signaling or <i>Arabidopsis</i> development. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2275-2280.	3.3	314
66	A key link between jasmonic acid signaling and auxin biosynthesis. Science China Life Sciences, 2015, 58, 311-312.	2.3	5
67	Development of 4-methoxy-7-nitroindolinyl (MNI)-caged auxins which are extremely stable in planta. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4464-4471.	1.0	11
68	Distinct Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants. Plant and Cell Physiology, 2015, 56, 1641-1654.	1.5	142
69	Auxin Biosynthesis. The Arabidopsis Book, 2014, 12, e0173.	0.5	197
70	Auxin Overproduction in Shoots Cannot Rescue Auxin Deficiencies in Arabidopsis Roots. Plant and Cell Physiology, 2014, 55, 1072-1079.	1.5	202
71	Selfâ€processing of ribozymeâ€flanked RNAs into guide RNAs <i>in vitro</i> and <i>in vivo</i> for CRISPRâ€mediated genome editing. Journal of Integrative Plant Biology, 2014, 56, 343-349.	4.1	477
72	Tryptophan-dependent auxin biosynthesis is required for HD-ZIP III-mediated xylem patterning. Development (Cambridge), 2014, 141, 1250-1259.	1.2	85

#	Article	IF	CITATIONS
73	Specific and heritable gene editing in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4357-4358.	3.3	29
74	Auxin Biosynthesis and Catabolism. , 2014, , 21-38.		12
75	The Biochemical Mechanism of Auxin Biosynthesis by an Arabidopsis YUCCA Flavin-containing Monooxygenase. Journal of Biological Chemistry, 2013, 288, 1448-1457.	1.6	175
76	Coordination of auxin and ethylene biosynthesis by the aminotransferase VAS1. Nature Chemical Biology, 2013, 9, 244-246.	3.9	99
77	The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of <i><scp>YUCCA</scp>8</i> and <i><scp>YUCCA</scp>9</i> gene expression. Plant Journal, 2013, 74, 626-637.	2.8	178
78	Epigenetic Suppression of T-DNA Insertion Mutants in Arabidopsis. Molecular Plant, 2013, 6, 539-545.	3.9	31
79	A PP6-Type Phosphatase Holoenzyme Directly Regulates PIN Phosphorylation and Auxin Efflux in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 2497-2514.	3.1	84
80	Pattern of Auxin and Cytokinin Responses for Shoot Meristem Induction Results from the Regulation of Cytokinin Biosynthesis by AUXIN RESPONSE FACTOR3 Â Â. Plant Physiology, 2012, 161, 240-251.	2.3	218
81	Auxin Biosynthesis: A Simple Two-Step Pathway Converts Tryptophan to Indole-3-Acetic Acid in Plants. Molecular Plant, 2012, 5, 334-338.	3.9	405
82	Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF <i>ARABIDOPSIS</i> and YUCCAs in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18518-18523.	3.3	580
83	The main auxin biosynthesis pathway in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18512-18517.	3.3	827
84	Allelic Analyses of the <i>Arabidopsis YUC1</i> Locus Reveal Residues and Domains Essential for the Functions of YUC Family of Flavin Monooxygenases. Journal of Integrative Plant Biology, 2011, 53, 54-62.	4.1	26
85	NPY Genes Play an Essential Role in Root Gravitropic Responses in Arabidopsis. Molecular Plant, 2011, 4, 171-179.	3.9	41
86	Auxin Biosynthesis and Its Role in Plant Development. Annual Review of Plant Biology, 2010, 61, 49-64.	8.6	1,085
87	A platform of high-density INDEL/CAPS markers for map-based cloning in Arabidopsis. Plant Journal, 2010, 63, 880-888.	2.8	72
88	REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16883-16888.	3.3	226
89	An Allelic Mutant Series of <i>ATM3</i> Reveals Its Key Role in the Biogenesis of Cytosolic Iron-Sulfur Proteins in Arabidopsis Â. Plant Physiology, 2009, 151, 590-602.	2.3	120
90	Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5430-5435.	3.3	304

#	Article	IF	CITATIONS
91	The possible action mechanisms of indole-3-acetic acid methyl ester in Arabidopsis. Plant Cell Reports, 2008, 27, 575-584.	2.8	43
92	<i>SPOROCYTELESS</i> modulates <i>YUCCA</i> expression to regulate the development of lateral organs in Arabidopsis. New Phytologist, 2008, 179, 751-764.	3.5	69
93	The role of local biosynthesis of auxin and cytokinin in plant development. Current Opinion in Plant Biology, 2008, 11, 16-22.	3.5	151
94	Rapid Synthesis of Auxin via a New Tryptophan-Dependent Pathway Is Required for Shade Avoidance in Plants. Cell, 2008, 133, 164-176.	13.5	928
95	Plant Hormones and Signaling: Common Themes and New Developments. Developmental Cell, 2008, 14, 467-473.	3.1	102
96	<i>NPY</i> genes and AGC kinases define two key steps in auxin-mediated organogenesis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 21017-21022.	3.3	139
97	Binding of Sulfurated Molybdenum Cofactor to the C-terminal Domain of ABA3 from Arabidopsis thaliana Provides Insight into the Mechanism of Molybdenum Cofactor Sulfuration. Journal of Biological Chemistry, 2008, 283, 9642-9650.	1.6	73
98	A New CULLIN 1 Mutant Has Altered Responses to Hormones and Light in Arabidopsis. Plant Physiology, 2007, 143, 684-696.	2.3	74
99	BIN4, a Novel Component of the Plant DNA Topoisomerase VI Complex, Is Required for Endoreduplication in <i>Arabidopsis</i> . Plant Cell, 2007, 19, 3655-3668.	3.1	103
100	NPY1, a BTB-NPH3-like protein, plays a critical role in auxin-regulated organogenesis in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18825-18829.	3.3	125
101	Auxin Synthesized by the YUCCA Flavin Monooxygenases Is Essential for Embryogenesis and Leaf Formation in <i>Arabidopsis</i> . Plant Cell, 2007, 19, 2430-2439.	3.1	601
102	A Role for Auxin in Flower Development. Journal of Integrative Plant Biology, 2007, 49, 99-104.	4.1	112
103	An Arabidopsis thaliana virescent mutant reveals a role for ClpR1 in plastid development. Plant Molecular Biology, 2006, 63, 85-96.	2.0	120
104	Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues inArabidopsis. Genes and Development, 2006, 20, 1790-1799.	2.7	997
105	A Role for Auxin Response Factor 19 in Auxin and Ethylene Signaling in Arabidopsis. Plant Physiology, 2006, 140, 899-908.	2.3	163
106	Recent Advances in Auxin Biosynthesis and Conjugation. Recent Advances in Phytochemistry, 2006, 40, 271-285.	0.5	2
107	Genetic and chemical analyses of the action mechanisms of sirtinol in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3129-3134.	3.3	81
108	An Indole-3-Acetic Acid Carboxyl Methyltransferase Regulates Arabidopsis Leaf Development. Plant Cell, 2005, 17, 2693-2704.	3.1	260

#	Article	IF	CITATIONS
109	A Mutation in the Anticodon of a Single tRNAala Is Sufficient to Confer Auxin Resistance in Arabidopsis. Plant Physiology, 2005, 139, 1284-1290.	2.3	17
110	AtCAND1, A HEAT-Repeat Protein That Participates in Auxin Signaling in Arabidopsis. Plant Physiology, 2004, 135, 1020-1026.	2.3	90
111	The CW domain, a structural module shared amongst vertebrates, vertebrate-infecting parasites and higher plants. Trends in Biochemical Sciences, 2003, 28, 576-580.	3.7	83
112	SIR1, an Upstream Component in Auxin Signaling Identified by Chemical Genetics. Science, 2003, 301, 1107-1110.	6.0	158
113	Chemical Genetic Approaches to Plant Biology. Plant Physiology, 2003, 133, 448-455.	2.3	132
114	Revisiting the kinetics of nitric oxide (NO) binding to soluble guanylate cyclase: The simple NO-binding model is incorrect. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12097-12101.	3.3	128
115	A crucial role for the putative Arabidopsis topoisomerase VI in plant growth and development. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10191-10196.	3.3	120
116	Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes and Development, 2002, 16, 3100-3112.	2.7	598
117	Divergent perspectives on GM food. Nature Biotechnology, 2002, 20, 1195-1196.	9.4	11
118	A Link between the Light and Gibberellin Signaling Cascades. Developmental Cell, 2001, 1, 315-316.	3.1	3
119	BIG: a calossin-like protein required for polar auxin transport in Arabidopsis. Genes and Development, 2001, 15, 1985-1997.	2.7	250
120	Cu2+ and Zn2+ Inhibit Nitric-oxide Synthase through an Interaction with the Reductase Domain. Journal of Biological Chemistry, 2000, 275, 14070-14076.	1.6	23
121	Inhibition of Soluble Guanylate Cyclase by ODQ. Biochemistry, 2000, 39, 10848-10854.	1.2	208
122	Cellular Applications of a Sensitive and Selective Fiber-Optic Nitric Oxide Biosensor Based on a Dye-Labeled Heme Domain of Soluble Guanylate Cyclase. Analytical Chemistry, 1999, 71, 2071-2075.	3.2	73
123	Structural Dynamics in the Guanylate Cyclase Heme Pocket after CO Photolysis. Journal of the American Chemical Society, 1999, 121, 7397-7400.	6.6	11
124	Structural Changes in the Heme Proximal Pocket Induced by Nitric Oxide Binding to Soluble Guanylate Cyclaseâ€. Biochemistry, 1998, 37, 12458-12464.	1.2	64
125	Resonance Raman Characterization of the Heme Domain of Soluble Guanylate Cyclaseâ€. Biochemistry, 1998, 37, 16289-16297.	1.2	48
126	Localization of the Heme Binding Region in Soluble Guanylate Cyclaseâ€. Biochemistry, 1997, 36, 15959-15964.	1.2	127