Tsaffrir Zor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5853043/publications.pdf Version: 2024-02-01

TEAFEDID 700

#	Article	IF	CITATIONS
1	Linearization of the Bradford Protein Assay Increases Its Sensitivity: Theoretical and Experimental Studies. Analytical Biochemistry, 1996, 236, 302-308.	2.4	903
2	Solution Structure of the KIX Domain of CBP Bound to the Transactivation Domain of c-Myb. Journal of Molecular Biology, 2004, 337, 521-534.	4.2	181
3	Identification of small-molecule antagonists that inhibit an activator:coactivator interaction. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17622-17627.	7.1	180
4	Cooperativity in Transcription Factor Binding to the Coactivator CREB-binding Protein (CBP). Journal of Biological Chemistry, 2002, 277, 43168-43174.	3.4	166
5	Linearization of the Bradford Protein Assay. Journal of Visualized Experiments, 2010, , .	0.3	138
6	Roles of Phosphorylation and Helix Propensity in the Binding of the KIX Domain of CREB-binding Protein by Constitutive (c-Myb) and Inducible (CREB) Activators. Journal of Biological Chemistry, 2002, 277, 42241-42248.	3.4	134
7	Guanosine triphosphatase stimulation of oncogenic Ras mutants. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 7065-7070.	7.1	131
8	Role of Secondary Structure in Discrimination between Constitutive and Inducible Activators. Molecular and Cellular Biology, 1999, 19, 5601-5607.	2.3	127
9	Role of CREB in modulation of TNFα and IL-10 expression in LPS-stimulated RAW264.7 macrophages. Molecular Immunology, 2010, 47, 1396-1403.	2.2	84
10	Reversible light-stimulated activation and deactivation of .alphachymotrypsin by its immobilization in photoisomerizable copolymers. Journal of the American Chemical Society, 1993, 115, 8690-8694.	13.7	82
11	The Bacterial Quorum-Sensing Signal Molecule <i>N</i> -3-Oxo-Dodecanoyl- <scp> </scp> -Homoserine Lactone Reciprocally Modulates Pro- and Anti-Inflammatory Cytokines in Activated Macrophages. Journal of Immunology, 2013, 191, 337-344.	0.8	67
12	Photoregulation of .alphachymotrypsin by its immobilization in a photochromic azobenzene copolymer. Journal of the American Chemical Society, 1991, 113, 4013-4014.	13.7	47
13	Hyaluronan-modified and regular multilamellar liposomes provide sub-cellular targeting to macrophages, without eliciting a pro-inflammatory response. Journal of Controlled Release, 2012, 160, 388-393.	9.9	39
14	The Phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 modulates cytokine expression in macrophages via p50 nuclear factor kappa B inhibition, in a PI3K-independent mechanism. Biochemical Pharmacology, 2012, 83, 106-114.	4.4	38
15	Identification of Elements That Dictate the Specificity of Mitochondrial Hsp60 for Its Co-Chaperonin. PLoS ONE, 2012, 7, e50318.	2.5	32
16	A ceramideâ€1â€phosphate analogue, PCERAâ€1, simultaneously suppresses tumour necrosis factorâ€Î± and induces interleukinâ€10 production in activated macrophages. Immunology, 2009, 127, 103-115.	4.4	31
17	Synergistic IL-10 induction by LPS and the ceramide-1-phosphate analog PCERA-1 is mediated by the cAMP and p38 MAP kinase pathways. Molecular Immunology, 2009, 46, 1979-1987.	2.2	30
18	Exclusive Temporal Stimulation of IL-10 Expression in LPS-Stimulated Mouse Macrophages by cAMP Inducers and Type I Interferons. Frontiers in Immunology, 2019, 10, 1788.	4.8	30

TSAFFRIR ZOR

#	Article	IF	CITATIONS
19	The ceramideâ€1â€phosphate analogue PCERAâ€1 modulates tumour necrosis factorâ€Î± and interleukinâ€10 production in macrophages via the cAMP–PKA–CREB pathway in a GTPâ€dependent manner. Immunology, 2010, 129, 375-385.	4.4	27
20	Rescue of a Mutant G-Protein by Substrate-Assisted Catalysis. FEBS Journal, 1997, 249, 330-336.	0.2	26
21	Modulation of TNFα, IL-10 and IL-12p40 levels by a ceramide-1-phosphate analog, PCERA-1, in vivo and ex vivo in primary macrophages. Immunology Letters, 2009, 123, 1-8.	2.5	26
22	Sulfatides are endogenous ligands for the TLR4–MD-2 complex. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	24
23	GTP analogue hydrolysis by the Gs protein: implication for the role of catalytic glutamine in the GTPase reaction. FEBS Letters, 1998, 433, 326-330.	2.8	20
24	Distinct receptor-mediated activities in macrophages for natural ceramide-1-phosphate (C1P) and for phospho-ceramide analogue-1 (PCERA-1). Molecular and Cellular Endocrinology, 2010, 314, 248-255.	3.2	20
25	Integrated microfluidic approach for quantitative high-throughput measurements of transcription factor binding affinities. Nucleic Acids Research, 2016, 44, e51-e51.	14.5	18
26	The cAMP Pathway Amplifies Early MyD88-Dependent and Type I Interferon-Independent LPS-Induced Interleukin-10 Expression in Mouse Macrophages. Mediators of Inflammation, 2019, 2019, 1-12.	3.0	17
27	A ceramide analog inhibits cPLA2 activity and consequent PGE2 formation in LPS-stimulated macrophages. Immunology Letters, 2011, 135, 136-143.	2.5	16
28	Exogenous ceramide-1-phosphate (C1P) and phospho-ceramide analogue-1 (PCERA-1) regulate key macrophage activities via distinct receptors. Immunology Letters, 2016, 169, 73-81.	2.5	15
29	Species selective diazirine positioning in tag-free photoactive quorum sensing probes. Chemical Communications, 2013, 49, 5826.	4.1	13
30	A linear mixed oxidation state trinuclear cobalt complex with six bridging sulfito ligands. Inorganica Chimica Acta, 1991, 188, 91-93.	2.4	11
31	m-Acetylanilido-GTP, a novel photoaffinity label for GTP-binding proteins: synthesis and application. Biochemical Journal, 1995, 306, 253-258.	3.7	11
32	Immunoediting role for major vault protein in apoptotic signaling induced by bacterial <i>N</i> -acyl homoserine lactones. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	11
33	3-Aminobenzamide Prevents Concanavalin A-Induced Acute Hepatitis by an Anti-inflammatory and Anti-oxidative Mechanism. Digestive Diseases and Sciences, 2018, 63, 3382-3397.	2.3	9
34	A dual and conflicting role for imiquimod in inflammation: A TLR7 agonist and a cAMP phosphodiesterase inhibitor. Biochemical Pharmacology, 2020, 182, 114206.	4.4	6
35	Synthesis and evaluation of a tag-free photoactive phospho-ceramide analogue-1 (PCERA-1) probe to study immunomodulation in macrophages. Chemical Communications, 2017, 53, 3842-3845.	4.1	4
36	Substrate-assisted catalysis: Implications for biotechnology and drug design. Drug Development Research, 2000, 50, 250-257.	2.9	2